Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model

被引:102
|
作者
Chu, Hone-Jay [1 ]
Chang, Liang-Cheng [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Civil Engn, Hsinchu 30050, Taiwan
关键词
Estimation; Flood routing; Hydrologic models; Optimization; Parameters; Particles;
D O I
10.1061/(ASCE)HE.1943-5584.0000070
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The Muskingum model is the most widely used method for flood routing in hydrologic engineering. However, the application of the model still suffers from a lack of an efficient method for parameter estimation. Particle swarm optimization (PSO) is applied to the parameter estimation for the nonlinear Muskingum model. PSO does not need any initial guess of each parameter and thus avoids the subjective estimation usually found in traditional estimation methods and reduces the likelihood of finding a local optimum of the parameter values. Simulation results indicate that the proposed scheme can improve the accuracy of the Muskingum model for flood routing. A case study is presented to demonstrate that the proposed scheme is an alternative way to estimate the parameters of the Muskingum model.
引用
收藏
页码:1024 / 1027
页数:4
相关论文
共 50 条
  • [21] Parameter estimation for the nonlinear Muskingum model using the BFGS technique
    Geem, Zong Woo
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2006, 132 (05) : 474 - 478
  • [22] Parameter Estimation of Extended Nonlinear Muskingum Models with the Weed Optimization Algorithm
    Hamedi, Farzan
    Bozorg-Haddad, Omid
    Pazoki, Maryam
    Asgari, Hamid-Reza
    Parsa, Mehran
    Loaiciga, Hugo A.
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2016, 142 (12)
  • [23] Parameter estimation of extended nonlinear Muskingum Models with the weed optimization algorithm
    Hamedi, Farzan
    Bozorg-Haddad, Omid
    Pazoki, Maryam
    Asgari, Hamid-Reza
    Parsa, Mehran
    Loáiciga, Hugo A.
    Journal of Irrigation and Drainage Engineering, 2016, 142 (12):
  • [24] A Hybrid Particle Swarm Algorithm for Nonlinear Parameter Estimation
    Pei, Shengyu
    Zhou, Yongquan
    Luo, Qifang
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 219 - 222
  • [25] Parameter estimation of linear and nonlinear Muskingum models
    Yoon, Jaewan
    Padmanabhan, G.
    Journal of Water Resources Planning and Management, 1993, 119 (05) : 600 - 610
  • [26] Issues in optimal parameter estimation for the nonlinear Muskingum flood routing model
    Geem, Zong Woo
    ENGINEERING OPTIMIZATION, 2014, 46 (03) : 328 - 339
  • [27] Multiobjective particle swarm optimization for parameter estimation in hydrology
    Gill, M. Kashif
    Kaheil, Yasir H.
    Khalil, Abedalrazq
    McKee, Mac
    Bastidas, Luis
    WATER RESOURCES RESEARCH, 2006, 42 (07)
  • [28] Particle Swarm Optimization for Chaotic System Parameter Estimation
    Samanta, B.
    Nataraj, C.
    2009 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2009, : 74 - 80
  • [29] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [30] Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm
    Ma, Jieming
    Man, Ka Lok
    Guan, Sheng-Uei
    Ting, T. O.
    Wong, Prudence W. H.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (03) : 343 - 352