Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model

被引:102
|
作者
Chu, Hone-Jay [1 ]
Chang, Liang-Cheng [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Civil Engn, Hsinchu 30050, Taiwan
关键词
Estimation; Flood routing; Hydrologic models; Optimization; Parameters; Particles;
D O I
10.1061/(ASCE)HE.1943-5584.0000070
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The Muskingum model is the most widely used method for flood routing in hydrologic engineering. However, the application of the model still suffers from a lack of an efficient method for parameter estimation. Particle swarm optimization (PSO) is applied to the parameter estimation for the nonlinear Muskingum model. PSO does not need any initial guess of each parameter and thus avoids the subjective estimation usually found in traditional estimation methods and reduces the likelihood of finding a local optimum of the parameter values. Simulation results indicate that the proposed scheme can improve the accuracy of the Muskingum model for flood routing. A case study is presented to demonstrate that the proposed scheme is an alternative way to estimate the parameters of the Muskingum model.
引用
收藏
页码:1024 / 1027
页数:4
相关论文
共 50 条
  • [41] Application of Particle Swarm Optimization to Parameter Estimation of a McKibben Pneumatic Artificial Muscle Model
    Okabe, Atsushi
    Kogiso, Kiminao
    PROCEEDINGS OF 2016 IEEE 4TH INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS, NETWORKS, AND APPLICATIONS (CPSNA), 2016, : 49 - 54
  • [42] Parameter estimation for chaotic system based on particle swarm optimization
    Gao, F
    Tong, HQ
    ACTA PHYSICA SINICA, 2006, 55 (02) : 577 - 582
  • [43] Parameter Estimation of Bioprocesses via Parallel Particle Swarm Optimization
    Sendrescu, Dorin
    Petre, Emil
    Bobasu, Eugen
    Roman, Monica
    2016 20TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2016, : 336 - 341
  • [44] Application of particle swarm optimization to the estimation of the TSInSAR deformation parameter
    Xue, Feiyang
    Lv, Xiaolei
    Chai, Huiming
    Huang, Huibao
    REMOTE SENSING LETTERS, 2019, 10 (08) : 756 - 765
  • [45] Parameter Estimation for Nonlinear Muskingum Model Based on Immune Clonal Selection Algorithm
    Luo, Jungang
    Xie, Jiancang
    JOURNAL OF HYDROLOGIC ENGINEERING, 2010, 15 (10) : 844 - 851
  • [46] Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method
    Niazkar, Majid
    Afzali, Seied Hosein
    HYDROLOGY RESEARCH, 2017, 48 (05): : 1253 - 1267
  • [47] A Improved Particle Swarm optimization and Its Application in the Parameter Estimation
    Wu Tiebin
    Cheng Yun
    Hu Zhikun
    Zhou Taoyun
    Liu Yunlian
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1150 - +
  • [48] APPLICATION OF PARTICLE SWARM OPTIMIZATION FOR PARAMETER ESTIMATION OF THE LOGISTIC MAP
    Sheludko, A. S.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (03):
  • [49] Parameter Estimation of the Nonlinear Muskingum Model Using Parameter-Setting-Free Harmony Search
    Geem, Zong Woo
    JOURNAL OF HYDROLOGIC ENGINEERING, 2011, 16 (08) : 684 - 688
  • [50] Parameter determination of impedance model by particle swarm optimization
    Gao Xue-lian
    Cui Zhen-nan
    Chen Yan-yu
    Feng Nan
    Zhao Lei
    Fan Jie-qing
    2013 ASIA-PACIFIC SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (APEMC), 2013,