Application of particle swarm optimization to the estimation of the TSInSAR deformation parameter

被引:5
|
作者
Xue, Feiyang [1 ,2 ,3 ]
Lv, Xiaolei [1 ,2 ]
Chai, Huiming [1 ,2 ,3 ]
Huang, Huibao [4 ]
机构
[1] Chinese Acad Sci, Inst Elect, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Technol Geospatial Informat Proc & Applic, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing, Peoples R China
[4] Dadu Hydropower Dev Co Ltd, Chengdu, Sichuan, Peoples R China
关键词
PERMANENT SCATTERERS; SURFACE DEFORMATION; SAR; ALGORITHM;
D O I
10.1080/2150704X.2019.1606468
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Time-series Interferometric Synthetic Aperture Radar (TSInSAR) is a significant technology that monitors the earth's surface deformation. Obtaining a highly accurate deformation parameter is challenging because of errors caused by local extremums. In this letter, we introduce Particle Swarm Optimization (PSO) to solve this problem. The deformation rate and elevation correction parameters to be estimated can be regarded as a particle in continuous two-dimensional space. An iterative search strategy is executed so that the particles move in the solution space. Cooperation and information sharing between particles are utilized in the search strategy, which is expected to move the particles toward the best solution and avoid the local optimum. To validate the reliability of PSO, 23 Synthetic Aperture Radar (SAR) images in Beijing were exploited to retrieve deformation by PSO as well as by standard Permanent Scatterer Interferometry (PSI). We compared the results with the corresponding levelling data. Experiment suggested that there about 11% points have higher accuracy by employing PSO than those by standard PSI.
引用
收藏
页码:756 / 765
页数:10
相关论文
共 50 条
  • [1] APPLICATION OF PARTICLE SWARM OPTIMIZATION FOR PARAMETER ESTIMATION OF THE LOGISTIC MAP
    Sheludko, A. S.
    [J]. BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (03):
  • [2] A Improved Particle Swarm optimization and Its Application in the Parameter Estimation
    Wu Tiebin
    Cheng Yun
    Hu Zhikun
    Zhou Taoyun
    Liu Yunlian
    [J]. MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1150 - +
  • [3] Multiobjective particle swarm optimization for parameter estimation in hydrology
    Gill, M. Kashif
    Kaheil, Yasir H.
    Khalil, Abedalrazq
    McKee, Mac
    Bastidas, Luis
    [J]. WATER RESOURCES RESEARCH, 2006, 42 (07)
  • [4] Particle Swarm Optimization for Chaotic System Parameter Estimation
    Samanta, B.
    Nataraj, C.
    [J]. 2009 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2009, : 74 - 80
  • [5] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    [J]. VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [6] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    [J]. CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [7] Cosmological parameter estimation using particle swarm optimization
    Prasad, Jayanti
    Souradeep, Tarun
    [J]. PHYSICAL REVIEW D, 2012, 85 (12):
  • [8] Parameter estimation for chaotic systems by particle swarm optimization
    He, Qie
    Wang, Ling
    Liu, Bo
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 654 - 661
  • [9] Application of Quantum-behaved Particle Swarm Optimization in Parameter Estimation of Option Pricing
    Zhao, Xia
    Sun, Jun
    Xu, Wenbo
    [J]. PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE (DCABES 2010), 2010, : 10 - 12
  • [10] Application of Particle Swarm Optimization to Parameter Estimation of a McKibben Pneumatic Artificial Muscle Model
    Okabe, Atsushi
    Kogiso, Kiminao
    [J]. PROCEEDINGS OF 2016 IEEE 4TH INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS, NETWORKS, AND APPLICATIONS (CPSNA), 2016, : 49 - 54