Parameter estimation for chaotic systems by particle swarm optimization

被引:147
|
作者
He, Qie [1 ]
Wang, Ling [1 ]
Liu, Bo [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2006.03.079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parameter estimation for chaotic systems is an important issue in nonlinear science and has attracted increasing interests from various research fields, which could be essentially formulated as a multi-dimensional optimization problem. As a novel evolutionary computation technique, particle swarm optimization (PSO) has attracted much attention and wide applications, owing to its simple concept, easy implementation and quick convergence. However, to the best of our knowledge, there is no published work on PSO for estimating parameters of chaotic systems. In this paper, a PSO approach is applied to estimate the parameters of Lorenz system. Numerical simulation and the comparisons demonstrate the effectiveness and robustness of PSO. Moreover, the effect of population size on the optimization performances is investigated as well. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:654 / 661
页数:8
相关论文
共 50 条
  • [1] Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
    Sun, Jun
    Zhao, Ji
    Wu, Xiaojun
    Fang, Wei
    Cai, Yujie
    Xu, Wenbo
    [J]. PHYSICS LETTERS A, 2010, 374 (28) : 2816 - 2822
  • [2] Particle Swarm Optimization for Chaotic System Parameter Estimation
    Samanta, B.
    Nataraj, C.
    [J]. 2009 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2009, : 74 - 80
  • [3] Parameter estimation for chaotic system based on particle swarm optimization
    Gao, F
    Tong, HQ
    [J]. ACTA PHYSICA SINICA, 2006, 55 (02) : 577 - 582
  • [4] PARAMETER ESTIMATION FOR NOISY CHAOTIC SYSTEMS BASED ON AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM
    Wei, Jiamin
    Yu, Yongguang
    Wang, Sha
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (02): : 232 - 242
  • [5] Parameter Estimation for One-Dimensional Chaotic Systems by Guaranteed Algorithm and Particle Swarm Optimization
    Sheludko, Anton S.
    [J]. IFAC PAPERSONLINE, 2018, 51 (32): : 337 - 342
  • [6] Parameter identification in chaotic systems by means of quantum particle swarm optimization
    Zhang Hong-Li
    Song Li-Li
    [J]. ACTA PHYSICA SINICA, 2013, 62 (19)
  • [7] Parameter Identification of Chaotic Systems by a Novel Dual Particle Swarm Optimization
    Jiang, Yunxiang
    Lau, Francis C. M.
    Wang, Shiyuan
    Tse, Chi K.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (02):
  • [8] Parameter estimation for chaotic system based on improved adaptive particle swarm optimization
    Wang, Ya
    Yu, Yongguang
    Wen, Guoguang
    Wang, Hu
    [J]. Journal of Information and Computational Science, 2014, 11 (03): : 953 - 962
  • [9] Parameter estimation for chaotic system with initial random noises by particle swarm optimization
    Gao, Fei
    Lee, Ju-Jang
    Li, Zhuoqiu
    Tong, Hengqing
    Lue, Xiaohong
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1286 - 1291
  • [10] Parameter estimation for time-delay chaotic system by particle swarm optimization
    Tang, Yinggan
    Guan, Xinping
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (03) : 1391 - 1398