Cosmological parameter estimation using particle swarm optimization

被引:22
|
作者
Prasad, Jayanti [1 ]
Souradeep, Tarun [1 ]
机构
[1] IUCAA, Pune 411007, Maharashtra, India
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 12期
关键词
PROBE WMAP OBSERVATIONS; GENETIC ALGORITHMS; MICROWAVE; ANISOTROPIES; ERRORS;
D O I
10.1103/PhysRevD.85.123008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Constraining theoretical models, which are represented by a set of parameters, using observational data is an important exercise in cosmology. In Bayesian framework this is done by finding the probability distribution of parameters which best fits to the observational data using sampling based methods like Markov chain Monte Carlo (MCMC). It has been argued that MCMC may not be the best option in certain problems in which the target function (likelihood) poses local maxima or have very high dimensionality. Apart from this, there may be examples in which we are mainly interested to find the point in the parameter space at which the probability distribution has the largest value. In this situation the problem of parameter estimation becomes an optimization problem. In the present work we show that particle swarm optimization (PSO), which is an artificial intelligence inspired population based search procedure, can also be used for cosmological parameter estimation. Using PSO we were able to recover the best-fit Lambda cold dark matter (LCDM) model parameters from the WMAP seven year data without using any prior guess value or any other property of the probability distribution of parameters like standard deviation, as is common in MCMC. We also report the results of an exercise in which we consider a binned primordial power spectrum (to increase the dimensionality of problem) and find that a power spectrum with features gives lower chi square than the standard power law. Since PSO does not sample the likelihood surface in a fair way, we follow a fitting procedure to find the spread of likelihood function around the best-fit point.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    [J]. VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [2] Cosmological parameter estimation using particle swarm optimization (vol 85, 123008, 2012)
    Prasad, Jayanti
    Souradeep, Tarun
    [J]. PHYSICAL REVIEW D, 2014, 90 (10):
  • [3] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [4] USING PARTICLE SWARM OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION IN HYDROLOGICAL MODELLING
    Jakubcova, Michala
    [J]. INFORMATICS, GEOINFORMATICS AND REMOTE SENSING, VOL I (SGEM 2015), 2015, : 399 - 406
  • [5] Parameter estimation of nonlinear thermoelectric structures using particle swarm optimization
    Ojeda, Daniel R. G.
    de Almeida, Luiz A. L.
    Vilcanqui, Omar A. C.
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2018, 81 : 1 - 10
  • [6] Kinetic parameter estimation in hydrocracking using hybrid particle swarm optimization
    Kumar, V.
    Balasubramanian, P.
    [J]. FUEL, 2009, 88 (11) : 2171 - 2180
  • [7] Multiobjective particle swarm optimization for parameter estimation in hydrology
    Gill, M. Kashif
    Kaheil, Yasir H.
    Khalil, Abedalrazq
    McKee, Mac
    Bastidas, Luis
    [J]. WATER RESOURCES RESEARCH, 2006, 42 (07)
  • [8] Particle Swarm Optimization for Chaotic System Parameter Estimation
    Samanta, B.
    Nataraj, C.
    [J]. 2009 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2009, : 74 - 80
  • [9] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    [J]. CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [10] Parameter estimation for chaotic systems by particle swarm optimization
    He, Qie
    Wang, Ling
    Liu, Bo
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 654 - 661