Parameter estimation of nonlinear thermoelectric structures using particle swarm optimization

被引:3
|
作者
Ojeda, Daniel R. G. [1 ]
de Almeida, Luiz A. L. [1 ]
Vilcanqui, Omar A. C. [1 ]
机构
[1] Univ Fed Abc, Ctr Engn Modelagem & Ciencias Sociais Aplicadas, Ave Estados,5001, BR-09210580 Santo Andre, SP, Brazil
关键词
Energy Harvesting; Thermoelectric module; PSO algorithm; Genetic algorithm; Simulated annealing; System identification; Nonlinear LQG controller; Thermal controller for PCR cycling; Parameter estimation; Optimization; STABILITY; SENSORS;
D O I
10.1016/j.simpat.2017.11.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this investigation is motivated mainly for thermal energy harvesting devices and temperature feedback controllers interacting with electronic circuits. Mostly intended to design Linear Quadratic Gaussian (LQG) type controllers, suitable for uncertain dynamical systems, in which not all state variables are measured and available for proper feedback. We present a methodology for modeling and estimation of several internal parameters for a proposed thermal characterization apparatus that employs thermoelectric modules (TEMs). Repeated random vector sampling, similar to Monte Carlo method, is combined with particle swarm optimization (PSO) algorithm for parameter estimation. For the intended applications, is mandatory to drive apparatus that have embedded TEMs, not only using direct current powering, as usually done in literature, but also with alternate current signals over a large range of relevant frequencies. For exciting the many nonlinear and linear states during the identification procedure, a single embedded TEM is injected with a proper random electrical current signal having power spectral density of a band-limited white noise. Sensitivity to both initial conditions and different sets of random excitation, brings uncertainty in the estimated 21 parameters of our mechanical apparatus with two embedded TEMs and their corresponding dynamics. Simulation are presented showing the effectiveness of the proposed estimation technique, with convergence performance and parameter statistical distribution over a set of uncorrelated random current vector excitation. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    [J]. CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [2] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    [J]. VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [3] Cosmological parameter estimation using particle swarm optimization
    Prasad, Jayanti
    Souradeep, Tarun
    [J]. PHYSICAL REVIEW D, 2012, 85 (12):
  • [4] Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model
    Chu, Hone-Jay
    Chang, Liang-Cheng
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2009, 14 (09) : 1024 - 1027
  • [5] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [6] Parameter Estimation of the MISO Nonlinear System Based on Improved Particle Swarm Optimization
    Fan, Huaike
    Lin, Weixing
    [J]. MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 2563 - 2567
  • [7] Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization
    Zhou, Jianzhong
    Fang, Rengcun
    Li, Yuhong
    Zhang, Yongchuan
    Peng, Bing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 292 - 299
  • [8] Parameter identification of nonlinear systems using a particle swarm optimization approach
    Chang, Wei-Der
    Cheng, Jun-Ping
    Hsu, Ming-Chieh
    Tsai, Liang-Chan
    [J]. 2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, : 113 - 117
  • [9] Parameters Estimation for the New Four-Parameter Nonlinear Muskingum Model Using the Particle Swarm Optimization
    A. Moghaddam
    J. Behmanesh
    A. Farsijani
    [J]. Water Resources Management, 2016, 30 : 2143 - 2160
  • [10] Parameters Estimation for the New Four-Parameter Nonlinear Muskingum Model Using the Particle Swarm Optimization
    Moghaddam, A.
    Behmanesh, J.
    Farsijani, A.
    [J]. WATER RESOURCES MANAGEMENT, 2016, 30 (07) : 2143 - 2160