Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model

被引:102
|
作者
Chu, Hone-Jay [1 ]
Chang, Liang-Cheng [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Civil Engn, Hsinchu 30050, Taiwan
关键词
Estimation; Flood routing; Hydrologic models; Optimization; Parameters; Particles;
D O I
10.1061/(ASCE)HE.1943-5584.0000070
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The Muskingum model is the most widely used method for flood routing in hydrologic engineering. However, the application of the model still suffers from a lack of an efficient method for parameter estimation. Particle swarm optimization (PSO) is applied to the parameter estimation for the nonlinear Muskingum model. PSO does not need any initial guess of each parameter and thus avoids the subjective estimation usually found in traditional estimation methods and reduces the likelihood of finding a local optimum of the parameter values. Simulation results indicate that the proposed scheme can improve the accuracy of the Muskingum model for flood routing. A case study is presented to demonstrate that the proposed scheme is an alternative way to estimate the parameters of the Muskingum model.
引用
收藏
页码:1024 / 1027
页数:4
相关论文
共 50 条
  • [1] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1785 - 1799
  • [2] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Aijia Ouyang
    Kenli Li
    Tung Khac Truong
    Ahmed Sallam
    Edwin H.-M. Sha
    Neural Computing and Applications, 2014, 25 : 1785 - 1799
  • [3] Parameters Estimation for the New Four-Parameter Nonlinear Muskingum Model Using the Particle Swarm Optimization
    A. Moghaddam
    J. Behmanesh
    A. Farsijani
    Water Resources Management, 2016, 30 : 2143 - 2160
  • [4] Parameters Estimation for the New Four-Parameter Nonlinear Muskingum Model Using the Particle Swarm Optimization
    Moghaddam, A.
    Behmanesh, J.
    Farsijani, A.
    WATER RESOURCES MANAGEMENT, 2016, 30 (07) : 2143 - 2160
  • [6] Closure to "Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model" by H.-J. Chu and L.-C. Chang
    Chu, Hone-Jay
    JOURNAL OF HYDROLOGIC ENGINEERING, 2010, 15 (11) : 952 - 954
  • [7] Improved particle swarm optimization for parameter inversion of Muskingum model
    Zhang X.
    Ma Y.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2016, 37 (02): : 271 - 277
  • [8] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [9] Estimation of Fuzzy Parameters in the Linear Muskingum Model with the Aid of Particle Swarm Optimization
    Spiliotis, Mike
    Sordo-Ward, Alvaro
    Garrote, Luis
    SUSTAINABILITY, 2021, 13 (13)
  • [10] Parameter estimation for the nonlinear forms of the Muskingum model
    Hirpurkar, Piyusha
    Ghare, Aniruddha D.
    Journal of Hydrologic Engineering, 2015, 20 (08):