Hybrid particle swarm optimization for parameter estimation of Muskingum model

被引:0
|
作者
Aijia Ouyang
Kenli Li
Tung Khac Truong
Ahmed Sallam
Edwin H.-M. Sha
机构
[1] Hunan University,College of Computer Science and Electronic Engineering
[2] Industrial University of Hochiminh City,Faculty of Information Technology
[3] Suez Canal University,Faculty of Computers and Informatics
[4] Chongqing University,College of Computer Science
来源
关键词
Particle swarm optimization; Nelder–Mead simplex method; Muskingum model; Hybrid algorithm; Parameter estimation;
D O I
暂无
中图分类号
学科分类号
摘要
The Muskingum model is the most widely used and efficient method for flood routing in hydrologic engineering; however, the applications of this model still suffer from a lack of an efficient method for parameter estimation. Thus, in this paper, we present a hybrid particle swarm optimization (HPSO) to estimate the Muskingum model parameters by employing PSO hybridized with Nelder–Mead simplex method. The HPSO algorithm does not require initial values for each parameter, which helps to avoid the subjective estimation usually found in traditional estimation methods and to decrease the computation for global optimum search of the parameter values. We have carried out a set of simulation experiments to test the proposed model when applied to a Muskingum model, and we compared the results with eight superior methods. The results show that our scheme can improve the search accuracy and the convergence speed of Muskingum model for flood routing; that is, it has higher precision and faster convergence compared with other techniques.
引用
收藏
页码:1785 / 1799
页数:14
相关论文
共 50 条
  • [1] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1785 - 1799
  • [2] Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model
    Chu, Hone-Jay
    Chang, Liang-Cheng
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2009, 14 (09) : 1024 - 1027
  • [3] Parameters Estimation for the New Four-Parameter Nonlinear Muskingum Model Using the Particle Swarm Optimization
    A. Moghaddam
    J. Behmanesh
    A. Farsijani
    [J]. Water Resources Management, 2016, 30 : 2143 - 2160
  • [4] Parameters Estimation for the New Four-Parameter Nonlinear Muskingum Model Using the Particle Swarm Optimization
    Moghaddam, A.
    Behmanesh, J.
    Farsijani, A.
    [J]. WATER RESOURCES MANAGEMENT, 2016, 30 (07) : 2143 - 2160
  • [5] Estimation of Fuzzy Parameters in the Linear Muskingum Model with the Aid of Particle Swarm Optimization
    Spiliotis, Mike
    Sordo-Ward, Alvaro
    Garrote, Luis
    [J]. SUSTAINABILITY, 2021, 13 (13)
  • [6] Application of a Hybrid Optimization Method in Muskingum Parameter Estimation
    Bozorg-Haddad, Omid
    Hamedi, Farzan
    Fallah-Mehdipour, Elahe
    Orouji, Hosein
    Marino, Miguel A.
    [J]. JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2015, 141 (12)
  • [7] Parameter Estimation for Asymptotic Regression Model by Particle Swarm Optimization
    Xu, Xing
    Li, Yuanxiang
    Wu, Yu
    Du, Xin
    [J]. WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 679 - 686
  • [8] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [9] HYBRID PARTICLE SWARM - TABU SEARCH OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION
    Sebastian, Anish
    Schoen, Marco P.
    [J]. ASME 2013 DYNAMIC SYSTEMS AND CONTROL CONFERENCE, VOL 2, 2013,
  • [10] Kinetic parameter estimation in hydrocracking using hybrid particle swarm optimization
    Kumar, V.
    Balasubramanian, P.
    [J]. FUEL, 2009, 88 (11) : 2171 - 2180