Improved particle swarm optimization for parameter inversion of Muskingum model

被引:0
|
作者
Zhang, Xinming [1 ]
Ma, Yan [1 ]
机构
[1] Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen,518055, China
关键词
Stochastic models - Stochastic systems;
D O I
10.11990/jheu.201407078
中图分类号
学科分类号
摘要
In this study, the parameter inversion problem of the Muskingum model is considered. To overcome the premature phenomenon of particle swarm optimization, a new niche particle swarm optimizaiton (NPSO) is presented. NPSO combines traditonal particle swarm optimization with the fitness-sharing principle. By applying four test functions and parameter inversion based on the Muskingum model and comparing these with traditional particle swarm optimization, the efficiency in convergent speed and precision of this method are verified. However, inversion results are not good because of stochastic noise. To improve the antinoise capability of NPSO, a multiscale NPSO is constructed by combining the multiscale strategy with NPSO and by applying the parameter inversion of the Muskingum model with 5% stochastic noise. Inversion resultsverify the effectiveness of the improved algorithm; the antinoise performance of the NPSO has been increased, and the precision of the parameter inversion result is significantly improved. © 2016, Editorial Board of Journal of Harbin Engineering. All right reserved.
引用
收藏
页码:271 / 277
相关论文
共 50 条
  • [1] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1785 - 1799
  • [2] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Aijia Ouyang
    Kenli Li
    Tung Khac Truong
    Ahmed Sallam
    Edwin H.-M. Sha
    [J]. Neural Computing and Applications, 2014, 25 : 1785 - 1799
  • [3] Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model
    Chu, Hone-Jay
    Chang, Liang-Cheng
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2009, 14 (09) : 1024 - 1027
  • [4] An improved particle swarm optimization algorithm for AVO elastic parameter inversion problem
    Wu, Qinghua
    Zhu, Zhixin
    Yan, Xuesong
    Gong, Wenyin
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (09):
  • [5] Parameter Identification of Hysteresis Model with Improved Particle Swarm Optimization
    Ye, Meiying
    Wang, Xiaodong
    [J]. CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 415 - +
  • [6] Parameters Estimation for the New Four-Parameter Nonlinear Muskingum Model Using the Particle Swarm Optimization
    A. Moghaddam
    J. Behmanesh
    A. Farsijani
    [J]. Water Resources Management, 2016, 30 : 2143 - 2160
  • [7] Parameters Estimation for the New Four-Parameter Nonlinear Muskingum Model Using the Particle Swarm Optimization
    Moghaddam, A.
    Behmanesh, J.
    Farsijani, A.
    [J]. WATER RESOURCES MANAGEMENT, 2016, 30 (07) : 2143 - 2160
  • [8] Parameter Extraction of Memristor Model Based on Improved Particle Swarm Optimization
    Wang, Lei
    Wu, Youyu
    [J]. PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024, 2024, : 515 - 518
  • [9] On convergence and parameter selection of an improved particle swarm optimization
    Chen, Xin
    Li, Yangmin
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2008, 6 (04) : 559 - 570
  • [10] Improved particle swarm algorithm for hydrological parameter optimization
    Jiang, Yan
    Liu, Changmin
    Huang, Chongchao
    Wu, Xianing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 3207 - 3215