Parameter estimation of nonlinear thermoelectric structures using particle swarm optimization

被引:3
|
作者
Ojeda, Daniel R. G. [1 ]
de Almeida, Luiz A. L. [1 ]
Vilcanqui, Omar A. C. [1 ]
机构
[1] Univ Fed Abc, Ctr Engn Modelagem & Ciencias Sociais Aplicadas, Ave Estados,5001, BR-09210580 Santo Andre, SP, Brazil
关键词
Energy Harvesting; Thermoelectric module; PSO algorithm; Genetic algorithm; Simulated annealing; System identification; Nonlinear LQG controller; Thermal controller for PCR cycling; Parameter estimation; Optimization; STABILITY; SENSORS;
D O I
10.1016/j.simpat.2017.11.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this investigation is motivated mainly for thermal energy harvesting devices and temperature feedback controllers interacting with electronic circuits. Mostly intended to design Linear Quadratic Gaussian (LQG) type controllers, suitable for uncertain dynamical systems, in which not all state variables are measured and available for proper feedback. We present a methodology for modeling and estimation of several internal parameters for a proposed thermal characterization apparatus that employs thermoelectric modules (TEMs). Repeated random vector sampling, similar to Monte Carlo method, is combined with particle swarm optimization (PSO) algorithm for parameter estimation. For the intended applications, is mandatory to drive apparatus that have embedded TEMs, not only using direct current powering, as usually done in literature, but also with alternate current signals over a large range of relevant frequencies. For exciting the many nonlinear and linear states during the identification procedure, a single embedded TEM is injected with a proper random electrical current signal having power spectral density of a band-limited white noise. Sensitivity to both initial conditions and different sets of random excitation, brings uncertainty in the estimated 21 parameters of our mechanical apparatus with two embedded TEMs and their corresponding dynamics. Simulation are presented showing the effectiveness of the proposed estimation technique, with convergence performance and parameter statistical distribution over a set of uncorrelated random current vector excitation. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1785 - 1799
  • [32] APPLICATION OF PARTICLE SWARM OPTIMIZATION FOR PARAMETER ESTIMATION OF THE LOGISTIC MAP
    Sheludko, A. S.
    [J]. BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (03):
  • [33] Optimization of modular structures using Particle Swarm Optimization
    Duran, Orlando
    Perez, Luis
    Batocchio, Antonio
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (03) : 3507 - 3515
  • [34] Cosmological parameter estimation using particle swarm optimization (vol 85, 123008, 2012)
    Prasad, Jayanti
    Souradeep, Tarun
    [J]. PHYSICAL REVIEW D, 2014, 90 (10):
  • [35] Parameter estimation of the Bouc-Wen hysteresis model using particle swarm optimization
    Ye, Meiying
    Wang, Xiaodong
    [J]. SMART MATERIALS AND STRUCTURES, 2007, 16 (06) : 2341 - 2349
  • [36] Highly efficient photovoltaic parameter estimation using parallel particle swarm optimization on a GPU
    Gao, Shuhua
    Xiang, Cheng
    Lee, Tong Heng
    [J]. PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [37] Quality-of-Experience Parameter Estimation for Multisensorial Media using Particle Swarm Optimization
    Jalal, Lana
    Popescu, Vlad
    Murroni, Maurizio
    [J]. 2017 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM) & 2017 INTL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP), 2017, : 965 - 970
  • [38] Multi-objective parameter estimation of induction motor using particle swarm optimization
    Sakthivel, V. P.
    Bhuvaneswari, R.
    Subramanian, S.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (03) : 302 - 312
  • [39] Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing
    Mughal, Muhammad Ali
    Ma, Qishuang
    Xiao, Chunyan
    [J]. ENERGIES, 2017, 10 (08)
  • [40] PARAMETER ESTIMATION OF PERMANENT MAGNET SYNCHRONOUS MACHINES USING PARTICLE SWARM OPTIMIZATION ALGORITHM
    Abdelwanis, Mohamed I.
    El-sehiemy, Ragab
    Hamida, Mohmed A.
    [J]. REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2022, 67 (04): : 377 - 382