Highly efficient photovoltaic parameter estimation using parallel particle swarm optimization on a GPU

被引:1
|
作者
Gao, Shuhua [1 ]
Xiang, Cheng [1 ]
Lee, Tong Heng [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
关键词
photovoltaic modeling; parameter identification; parallel particle swarm optimization; GPU; parallel computation; MODELS; IDENTIFICATION; ALGORITHM; CELL; EXTRACTION;
D O I
10.1109/ISIE45552.2021.9576495
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate modeling of solar photovoltaic (PV) systems is crucial to their control and performance optimization. We focus on the two most widely used PV models, i.e., the single- and double-diode model, and try to estimate their parameters from current-voltage data. This task is usually formulated as a nonlinear least squares problem and tackled by various metaheuristic algorithms. Despite the abundance of sophisticated metaheuristics in the literature, we employ an (almost) standard particle swarm optimization (PSO) algorithm and, somewhat unexpectedly, find that such primitive PSO is adequate to solve the problem to high accuracy, though it may take more fitness evaluations. Moreover, given the population-based nature of PSO, we take full advantage of modern graphics processing units (GPUs) and develop a highly efficient PV parameter identification method by effectively parallelizing PSO on a GPU. Numerical results on two benchmark datasets show that our approach can achieve high estimation accuracy on par with state-of-the-art methods while enjoying approximately a hundred-times speedup. Our code is publicly available at https://github.com/ShuhuaGao/PV-PPSO.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm
    Ma, Jieming
    Man, Ka Lok
    Guan, Sheng-Uei
    Ting, T. O.
    Wong, Prudence W. H.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (03) : 343 - 352
  • [2] Accelerating Parameter Estimation for Photovoltaic Models via Parallel Particle Swarm Optimization
    Ma, Jieming
    Man, Ka Lok
    Ting, T. O.
    Zhang, Nan
    Guan, Sheng-Uei
    Wong, Prudence W. H.
    2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 175 - 178
  • [3] Parameter Estimation of Bioprocesses via Parallel Particle Swarm Optimization
    Sendrescu, Dorin
    Petre, Emil
    Bobasu, Eugen
    Roman, Monica
    2016 20TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2016, : 336 - 341
  • [4] Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing
    Mughal, Muhammad Ali
    Ma, Qishuang
    Xiao, Chunyan
    ENERGIES, 2017, 10 (08)
  • [5] Multicores and GPU utilization in parallel swarm algorithm for parameter estimation of photovoltaic cell model
    Ting, Tiew On
    Ma, Jieming
    Kim, Kyeong Soo
    Huang, Kaizhu
    APPLIED SOFT COMPUTING, 2016, 40 : 58 - 63
  • [6] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [7] Cosmological parameter estimation using particle swarm optimization
    Prasad, Jayanti
    Souradeep, Tarun
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [8] GPU-based Parallel Particle Swarm Optimization
    Zhou, You
    Tan, Ying
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 1493 - +
  • [9] Accelerating parallel particle swarm optimization via GPU
    Hung, Yukai
    Wang, Weichung
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (01): : 33 - 51
  • [10] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343