Highly efficient photovoltaic parameter estimation using parallel particle swarm optimization on a GPU

被引:1
|
作者
Gao, Shuhua [1 ]
Xiang, Cheng [1 ]
Lee, Tong Heng [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
关键词
photovoltaic modeling; parameter identification; parallel particle swarm optimization; GPU; parallel computation; MODELS; IDENTIFICATION; ALGORITHM; CELL; EXTRACTION;
D O I
10.1109/ISIE45552.2021.9576495
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate modeling of solar photovoltaic (PV) systems is crucial to their control and performance optimization. We focus on the two most widely used PV models, i.e., the single- and double-diode model, and try to estimate their parameters from current-voltage data. This task is usually formulated as a nonlinear least squares problem and tackled by various metaheuristic algorithms. Despite the abundance of sophisticated metaheuristics in the literature, we employ an (almost) standard particle swarm optimization (PSO) algorithm and, somewhat unexpectedly, find that such primitive PSO is adequate to solve the problem to high accuracy, though it may take more fitness evaluations. Moreover, given the population-based nature of PSO, we take full advantage of modern graphics processing units (GPUs) and develop a highly efficient PV parameter identification method by effectively parallelizing PSO on a GPU. Numerical results on two benchmark datasets show that our approach can achieve high estimation accuracy on par with state-of-the-art methods while enjoying approximately a hundred-times speedup. Our code is publicly available at https://github.com/ShuhuaGao/PV-PPSO.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Application of particle swarm optimization to the estimation of the TSInSAR deformation parameter
    Xue, Feiyang
    Lv, Xiaolei
    Chai, Huiming
    Huang, Huibao
    REMOTE SENSING LETTERS, 2019, 10 (08) : 756 - 765
  • [32] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Aijia Ouyang
    Kenli Li
    Tung Khac Truong
    Ahmed Sallam
    Edwin H.-M. Sha
    Neural Computing and Applications, 2014, 25 : 1785 - 1799
  • [33] A Improved Particle Swarm optimization and Its Application in the Parameter Estimation
    Wu Tiebin
    Cheng Yun
    Hu Zhikun
    Zhou Taoyun
    Liu Yunlian
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1150 - +
  • [34] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1785 - 1799
  • [35] APPLICATION OF PARTICLE SWARM OPTIMIZATION FOR PARAMETER ESTIMATION OF THE LOGISTIC MAP
    Sheludko, A. S.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (03):
  • [36] GPU based Parallel Cooperative Particle Swarm Optimization using C-CUDA: A Case Study
    Kumar, Jitendra
    Singh, Lotika
    Paul, Sandeep
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [37] Photovoltaic Parameter Estimation Using Heuristic Optimization
    Mirzapour, Omid
    Arpanahi, Sahand Karimi
    2017 IEEE 4TH INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2017, : 792 - 797
  • [38] Cosmological parameter estimation using particle swarm optimization (vol 85, 123008, 2012)
    Prasad, Jayanti
    Souradeep, Tarun
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [39] Parameter estimation of the Bouc-Wen hysteresis model using particle swarm optimization
    Ye, Meiying
    Wang, Xiaodong
    SMART MATERIALS AND STRUCTURES, 2007, 16 (06) : 2341 - 2349
  • [40] Quality-of-Experience Parameter Estimation for Multisensorial Media using Particle Swarm Optimization
    Jalal, Lana
    Popescu, Vlad
    Murroni, Maurizio
    2017 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM) & 2017 INTL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP), 2017, : 965 - 970