Highly efficient photovoltaic parameter estimation using parallel particle swarm optimization on a GPU

被引:1
|
作者
Gao, Shuhua [1 ]
Xiang, Cheng [1 ]
Lee, Tong Heng [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
关键词
photovoltaic modeling; parameter identification; parallel particle swarm optimization; GPU; parallel computation; MODELS; IDENTIFICATION; ALGORITHM; CELL; EXTRACTION;
D O I
10.1109/ISIE45552.2021.9576495
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate modeling of solar photovoltaic (PV) systems is crucial to their control and performance optimization. We focus on the two most widely used PV models, i.e., the single- and double-diode model, and try to estimate their parameters from current-voltage data. This task is usually formulated as a nonlinear least squares problem and tackled by various metaheuristic algorithms. Despite the abundance of sophisticated metaheuristics in the literature, we employ an (almost) standard particle swarm optimization (PSO) algorithm and, somewhat unexpectedly, find that such primitive PSO is adequate to solve the problem to high accuracy, though it may take more fitness evaluations. Moreover, given the population-based nature of PSO, we take full advantage of modern graphics processing units (GPUs) and develop a highly efficient PV parameter identification method by effectively parallelizing PSO on a GPU. Numerical results on two benchmark datasets show that our approach can achieve high estimation accuracy on par with state-of-the-art methods while enjoying approximately a hundred-times speedup. Our code is publicly available at https://github.com/ShuhuaGao/PV-PPSO.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Multi-objective parameter estimation of induction motor using particle swarm optimization
    Sakthivel, V. P.
    Bhuvaneswari, R.
    Subramanian, S.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (03) : 302 - 312
  • [42] PARAMETER ESTIMATION OF PERMANENT MAGNET SYNCHRONOUS MACHINES USING PARTICLE SWARM OPTIMIZATION ALGORITHM
    Abdelwanis, Mohamed I.
    El-sehiemy, Ragab
    Hamida, Mohmed A.
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2022, 67 (04): : 377 - 382
  • [43] Distributed and robust parameter estimation of IIR systems using incremental particle swarm optimization
    Majhi, Babita
    Panda, Ganapati
    DIGITAL SIGNAL PROCESSING, 2013, 23 (04) : 1303 - 1313
  • [44] Accurate Parameter Estimation of Contaminant Transport Inverse Problem using Particle Swarm Optimization
    Bharat, Tadikonda Venkata
    Sivapullaiah, P. V.
    Allam, M. M.
    2008 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2008, : 402 - 408
  • [45] Indirect and direct kinetic parameter estimation using partially linearized particle swarm optimization
    Kang, Seung Kwan
    Seo, Seongho
    Kim, Su Jin
    Lee, Jae Sung
    JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03)
  • [46] Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules
    Jordehi, A. Rezaee
    SOLAR ENERGY, 2018, 159 : 78 - 87
  • [47] Hierarchical parallel search with automatic parameter configuration for particle swarm optimization
    Zhao, Fuqing
    Ji, Fei
    Xu, Tianpeng
    Zhu, Ningning
    Jonrinaldi
    APPLIED SOFT COMPUTING, 2024, 151
  • [48] Quadratic interpolation and a new local search approach to improve particle swarm optimization: Solar photovoltaic parameter estimation
    Qaraad, Mohammed
    Amjad, Souad
    Hussein, Nazar K.
    Farag, M. A.
    Mirjalili, Seyedali
    Elhosseini, Mostafa A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236
  • [49] Fitness-guided particle swarm optimization with adaptive Newton-Raphson for photovoltaic model parameter estimation
    Premkumar, Manoharan
    Ravichandran, Sowmya
    Hashim, Tengku Juhana Tengku
    Sin, Tan Ching
    Abbassi, Rabeh
    Applied Soft Computing, 2024, 167
  • [50] Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2633 - 2638