Parameter estimation of multivariable Wiener nonlinear systems by the improved particle swarm optimization and coupling identification

被引:7
|
作者
Zong, Tiancheng [1 ]
Li, Junhong [1 ]
Lu, Guoping [1 ]
机构
[1] Nantong Univ, Sch Elect Engn, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
System identification; Multivariable Wiener system; Particle swarm optimization; Coupling identification; Auxiliary model; ESTIMATION ALGORITHM; MODEL;
D O I
10.1016/j.ins.2024.120192
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the parameter estimation of multivariable Wiener nonlinear systems. To solve the inconsistency problem of the parameter vector and the parameter matrix, the coupling identification concept is applied. Combined with particle swarm optimization (PSO) and an auxiliary model, the partially coupled improved particle swarm optimization (PC -IPSO) method is proposed. In this algorithm, the adaptive feedback inertia weight is improved to accelerate the convergence speed, and the retirement update mechanism is introduced to improve the optimization ability of the basic PSO algorithm. To verify the performance of PC -IPSO, we also derive a multivariable improved PSO (M -IPSO) method for comparison. The computational complexity analysis shows that the PC -IPSO algorithm requires less computational resources than the M -IPSO algorithm. Then, the convergence of the improved PSO method is analyzed. The simulation results indicate that the PC -IPSO method has a faster convergence speed and higher identification accuracy than the M -IPSO and several existing state-of-the-art methods for multivariable Wiener system identification.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization
    Zheng, Yu-xin
    Liao, Ying
    OPTIK, 2016, 127 (19): : 7865 - 7874
  • [2] Parameter identification of dynamical systems based on improved particle swarm optimization
    Ye, Meiying
    INTELLIGENT CONTROL AND AUTOMATION, 2006, 344 : 351 - 360
  • [3] Parameter identification of nonlinear systems using a particle swarm optimization approach
    Chang, Wei-Der
    Cheng, Jun-Ping
    Hsu, Ming-Chieh
    Tsai, Liang-Chan
    2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, : 113 - 117
  • [4] Parameter Estimation of the MISO Nonlinear System Based on Improved Particle Swarm Optimization
    Fan, Huaike
    Lin, Weixing
    MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 2563 - 2567
  • [5] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [6] Parameter identification of chaotic dynamic systems through an improved particle swarm optimization
    Modares, Hamidreza
    Alfi, Alireza
    Fateh, Mohammad-Mehdi
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (05) : 3714 - 3720
  • [7] Parameter estimation for chaotic systems by particle swarm optimization
    He, Qie
    Wang, Ling
    Liu, Bo
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 654 - 661
  • [8] A Improved Particle Swarm optimization and Its Application in the Parameter Estimation
    Wu Tiebin
    Cheng Yun
    Hu Zhikun
    Zhou Taoyun
    Liu Yunlian
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1150 - +
  • [9] PARAMETER ESTIMATION FOR NOISY CHAOTIC SYSTEMS BASED ON AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM
    Wei, Jiamin
    Yu, Yongguang
    Wang, Sha
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (02): : 232 - 242
  • [10] Parameter identification for Wiener model using particle swarm optimization with a case study
    Zhang, Yan
    Li, Shaoyuan
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1725 - +