Parameter identification of dynamical systems based on improved particle swarm optimization

被引:0
|
作者
Ye, Meiying [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Phys, Jinhua 321004, Peoples R China
来源
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Improved Particle Swarm Optimization (IPSO), which is a new robust stochastic evolutionary computation algorithm based on the movement and intelligence of swarms, is proposed to estimate parameters of nonlinear dynamical systems. The effectiveness of the IPSO algorithms is compared with Genetic Algorithms (GAs) and standard Particle Swarm Optimization (PSO). Simulation results of two kinds of nonlinear dynamical systems will be illustrated to show that the more accurate estimations can be achieved by using the IPSO method.
引用
收藏
页码:351 / 360
页数:10
相关论文
共 50 条
  • [1] Improved modal parameter identification method based on particle swarm optimization
    Zhang J.
    Guo X.
    Luo X.
    Zhang Y.
    Xu H.
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (02): : 255 - 264
  • [2] Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization
    Zheng, Yu-xin
    Liao, Ying
    [J]. OPTIK, 2016, 127 (19): : 7865 - 7874
  • [3] Parameter identification of chaotic dynamic systems through an improved particle swarm optimization
    Modares, Hamidreza
    Alfi, Alireza
    Fateh, Mohammad-Mehdi
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (05) : 3714 - 3720
  • [4] Application of particle swarm optimization to parameter search in dynamical systems
    Matsushita, Haruna
    Saito, Toshimichi
    [J]. IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2011, 2 (04): : 458 - 471
  • [5] Parameter Identification of Hysteresis Model with Improved Particle Swarm Optimization
    Ye, Meiying
    Wang, Xiaodong
    [J]. CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 415 - +
  • [6] Parameter identification of Box-Jenkins systems based on the particle swarm optimization
    Zong, Tiancheng
    Li, Junhong
    Li, Xiao
    Shang, Liangliang
    Zhang, Xiaojiao
    [J]. PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 1696 - 1701
  • [7] Parameter estimation of multivariable Wiener nonlinear systems by the improved particle swarm optimization and coupling identification
    Zong, Tiancheng
    Li, Junhong
    Lu, Guoping
    [J]. INFORMATION SCIENCES, 2024, 661
  • [8] PARAMETER ESTIMATION FOR NOISY CHAOTIC SYSTEMS BASED ON AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM
    Wei, Jiamin
    Yu, Yongguang
    Wang, Sha
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (02): : 232 - 242
  • [9] Parameter identification of induction motor based on particle swarm optimization
    Picardi, C.
    Rogano, N.
    [J]. 2006 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, VOLS 1-3, 2006, : 968 - +
  • [10] Parameter identification of underwater glider based on particle swarm optimization
    Wang, Li-Ming
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONIC INFORMATION ENGINEERING (CEIE 2016), 2016, 116 : 109 - 114