Parameter identification of underwater glider based on particle swarm optimization

被引:0
|
作者
Wang, Li-Ming [1 ]
机构
[1] Langfang Teachers Univ, Fac Phys & Elect Informat, Langfang 065000, Peoples R China
关键词
Underwater Glider; Dynamic Model; Particle Swarm Optimization; Under-Actuated System;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An accurate model for an underwater glider is important for the design of a high-performance underwater glider control system. The performance of such control systems is influenced by the parameter variation of underwater glider under real operation conditions. In this paper, the mass parameters of an underwater glider are identified by a particle swarm optimization (PSO) method based on experimental tests. The advantages of adopting the PSO algorithm in this research include easy implementation, high computational efficiency and stable convergence characteristics.
引用
收藏
页码:109 / 114
页数:6
相关论文
共 50 条
  • [1] Layout optimization of landing gears for an underwater glider based on particle swarm algorithm
    Zhang, Baoshou
    Song, Baowei
    Mao, Zhaoyong
    Li, Boyang
    [J]. APPLIED OCEAN RESEARCH, 2018, 70 : 22 - 31
  • [2] Parameter identification of induction motor based on particle swarm optimization
    Picardi, C.
    Rogano, N.
    [J]. 2006 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, VOLS 1-3, 2006, : 968 - +
  • [3] Particle swarm optimization based parameter identification applied to PMSM
    Liu, Li
    Cartes, David A.
    Liu, Wenxin
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 3064 - 3069
  • [4] Particle Swarm Optimization Based Load Model Parameter Identification
    Kim, Young-Gon
    Song, Hwachang
    Kim, Hong Rae
    Lee, Byongjun
    [J]. IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [5] Parameter Identification of MR Damper Model Based on Particle Swarm Optimization
    Yang, Yonggang
    Ding, Youchuang
    Zhu, Shixing
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 555 - 563
  • [6] Parameter identification of dynamical systems based on improved particle swarm optimization
    Ye, Meiying
    [J]. INTELLIGENT CONTROL AND AUTOMATION, 2006, 344 : 351 - 360
  • [7] Parameter Identification of Train basic resistance Based on Particle Swarm Optimization
    Li Tianxiang
    Yang Hang
    Wang Chuanru
    Wang Qingyuan
    Sun Pengfei
    Feng Xiaoyun
    [J]. 2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1572 - 1577
  • [8] Improved modal parameter identification method based on particle swarm optimization
    Zhang, Jindong
    Guo, Xiaonong
    Luo, Xiaoqun
    Zhang, Yujian
    Xu, Hongjun
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (02): : 255 - 264
  • [9] Load Parameter Identification Based on Particle Swarm Optimization and the Comparison to Ant Colony Optimization
    Li Haoguang
    Yu Yunhua
    Shen Xuefeng
    [J]. PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 545 - 550
  • [10] Cutting Parameter Optimization Based on particle swarm optimization
    Xi, Junmei
    Liao, Gaohua
    [J]. ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 255 - 258