Parameter identification of dynamical systems based on improved particle swarm optimization

被引:0
|
作者
Ye, Meiying [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Phys, Jinhua 321004, Peoples R China
来源
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Improved Particle Swarm Optimization (IPSO), which is a new robust stochastic evolutionary computation algorithm based on the movement and intelligence of swarms, is proposed to estimate parameters of nonlinear dynamical systems. The effectiveness of the IPSO algorithms is compared with Genetic Algorithms (GAs) and standard Particle Swarm Optimization (PSO). Simulation results of two kinds of nonlinear dynamical systems will be illustrated to show that the more accurate estimations can be achieved by using the IPSO method.
引用
收藏
页码:351 / 360
页数:10
相关论文
共 50 条
  • [31] Parameter Identification of DC Motor Drive Systems using Particle Swarm Optimization
    Hafez, Ishaq
    Dhaouadi, Rached
    [J]. 2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021), 2021, : 832 - 837
  • [32] Identification of time-varying energy systems based on improved particle swarm optimization algorithm
    Zhang, Hongli
    Song, Lili
    [J]. Energy Education Science and Technology Part A: Energy Science and Research, 2013, 31 (01): : 529 - 532
  • [33] Load Parameter Identification Based on Particle Swarm Optimization and the Comparison to Ant Colony Optimization
    Li Haoguang
    Yu Yunhua
    Shen Xuefeng
    [J]. PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 545 - 550
  • [34] Approximate dynamic programming based parameter optimization of particle swarm systems
    Kang Q.
    Wang L.
    An J.
    Wu Q.-D.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2010, 36 (08): : 1171 - 1181
  • [35] Parameter estimation of bilinear systems based on an adaptive particle swarm optimization
    Modares, Hamidreza
    Alfi, Alireza
    Sistani, Mohammad-Bagher Naghibi
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (07) : 1105 - 1111
  • [36] Parameter estimation for chaotic system based on improved adaptive particle swarm optimization
    Wang, Ya
    Yu, Yongguang
    Wen, Guoguang
    Wang, Hu
    [J]. Journal of Information and Computational Science, 2014, 11 (03): : 953 - 962
  • [37] Parameter Estimation of the MISO Nonlinear System Based on Improved Particle Swarm Optimization
    Fan, Huaike
    Lin, Weixing
    [J]. MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 2563 - 2567
  • [38] Geometric parameter calibration of industrial robot based on improved particle swarm optimization
    Kou B.
    Guo S.
    Ren D.
    [J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2022, 54 (01): : 9 - 13
  • [39] Cutting Parameter Optimization Based on particle swarm optimization
    Xi, Junmei
    Liao, Gaohua
    [J]. ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 255 - 258
  • [40] PID Controller Parameter Tuning Based on Improved Particle Swarm Optimization Algorithm
    Miao, Yanzi
    Liu, Yang
    Chen, Ying
    Jin, Huijie
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND MECHATRONICS, 2016, 34 : 104 - 107