Objectivity Lost when Riemann-Liouville or Caputo Fractional Order Derivatives Are Used

被引:0
|
作者
Balint, Agneta M. [1 ]
Balint, Stefan [2 ]
机构
[1] West Univ Timisoara, Dept Phys, Bulv V Parvan 4, Timisoara 300223, Romania
[2] West Univ Timisoara, Dept Comp Sci, Bulv V Parvan 4, Timisoara 300223, Romania
来源
TIM18 PHYSICS CONFERENCE | 2019年 / 2071卷
关键词
DISPERSION; EQUATION;
D O I
10.1063/1.5090070
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper the objectivity in science, the Riemann-Liouville and the Caputo fractional order derivatives are presented shortly. This is followed by the presentation of some recent papers which propose the use of these fractional order derivatives, instead of the integer order derivatives, in the description of some physical phenomena. The objectivity of the new mathematical concepts, constitutive equations, evolution equations in these papers is not considered. In the present paper it is shown that in classical mechanics when Riemann-Liouville or Caputo fractional derivatives are used, the objectivity of the new concepts, constitutive relations, evolution equations, is lost. With this aim this study was undertaken.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] On the objectivity of mathematical description of ion transport processes using general temporal Caputo and Riemann-Liouville fractional partial derivatives
    Balint, Agneta M.
    Balint, Stefan
    Neculae, Adrian
    CHAOS SOLITONS & FRACTALS, 2022, 156
  • [12] Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives
    Khan, Aziz
    Syam, Muhammed I.
    Zada, Akbar
    Khan, Hasib
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (07):
  • [13] Charging and Discharging RCα Circuit Under Riemann-Liouville and Caputo Fractional Derivatives
    AbdelAty, Amr M.
    Radwan, Ahmed G.
    Ahmed, Waleed A.
    Faied, Mariam
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,
  • [14] Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives
    Aziz Khan
    Muhammed I. Syam
    Akbar Zada
    Hasib Khan
    The European Physical Journal Plus, 133
  • [15] Dissipative fractional standard maps: Riemann-Liouville and Caputo
    Mendez-Bermudez, J. A.
    Aguilar-Sanchez, R.
    CHAOS, 2025, 35 (02)
  • [16] Approximation with Riemann-Liouville fractional derivatives
    Anastassiou, George A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (03): : 357 - 365
  • [17] Fractional order differential systems involving right Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [18] Complete infinitesimal prolongation of the Riemann-Liouville and Caputo derivatives
    Costa, Felix S.
    Soares, Junior C. A.
    Frederico, Gastao S. F.
    Sousa, J. Vanterler da C.
    Jarosz, S.
    REVIEWS IN MATHEMATICAL PHYSICS, 2024, 36 (05)
  • [19] A new approach to compute Riemann-Liouville and Caputo fractional derivatives for a product of two functions
    Alahmad, Rami
    Al-Jararha, Mohammadkheer
    El-Jammal, Walid
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2025,
  • [20] A Comparative Analysis of Conformable, Non-conformable, Riemann-Liouville, and Caputo Fractional Derivatives
    Brahim, A. Ait
    El Ghordaf, J.
    El Hajaji, A.
    Hilal, K.
    Valdes, J. E. Napoles
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1842 - 1854