Objectivity Lost when Riemann-Liouville or Caputo Fractional Order Derivatives Are Used

被引:0
|
作者
Balint, Agneta M. [1 ]
Balint, Stefan [2 ]
机构
[1] West Univ Timisoara, Dept Phys, Bulv V Parvan 4, Timisoara 300223, Romania
[2] West Univ Timisoara, Dept Comp Sci, Bulv V Parvan 4, Timisoara 300223, Romania
来源
TIM18 PHYSICS CONFERENCE | 2019年 / 2071卷
关键词
DISPERSION; EQUATION;
D O I
10.1063/1.5090070
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper the objectivity in science, the Riemann-Liouville and the Caputo fractional order derivatives are presented shortly. This is followed by the presentation of some recent papers which propose the use of these fractional order derivatives, instead of the integer order derivatives, in the description of some physical phenomena. The objectivity of the new mathematical concepts, constitutive equations, evolution equations in these papers is not considered. In the present paper it is shown that in classical mechanics when Riemann-Liouville or Caputo fractional derivatives are used, the objectivity of the new concepts, constitutive relations, evolution equations, is lost. With this aim this study was undertaken.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] CAUCHY PROBLEM FOR THE EQUATIONS WITH FRACTIONAL OF RIEMANN-LIOUVILLE DERIVATIVES
    Zabreiko, Petr P.
    Ponomareva, Svetlana, V
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2020, 64 (01): : 13 - 20
  • [42] Fractional Sobolev Spaces via Riemann-Liouville Derivatives
    Idczak, Dariusz
    Walczak, StanisBaw
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [43] Complex Grunwald-Letnikov, Liouville, Riemann-Liouville, and Caputo derivatives for analytic functions
    Ortigueira, Manuel D.
    Rodriguez-Germa, Luis
    Trujillo, Juan J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) : 4174 - 4182
  • [44] On Solutions of Fractional Integrodifferential Systems Involving ψ-Caputo Derivative and ψ-Riemann-Liouville Fractional Integral
    Boulares, Hamid
    Moumen, Abdelkader
    Fernane, Khaireddine
    Alzabut, Jehad
    Saber, Hicham
    Alraqad, Tariq
    Benaissa, Mhamed
    MATHEMATICS, 2023, 11 (06)
  • [45] Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross
    Chikriy, A. A.
    Matichin, I. I.
    JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2008, 40 (06) : 1 - 11
  • [46] On the Kolmogorov forward equations within Caputo and Riemann-Liouville fractions derivatives
    Alipour, Mohsen
    Baleanu, Dumitru
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (03): : 5 - 19
  • [47] On Riemann-Liouville integrals and Caputo Fractional derivatives via strongly modified (p, h)-convex functions
    Nosheen, Ammara
    Khan, Khuram Ali
    Bukhari, Mudassir Hussain
    Kahungu, Michael Kikomba
    Aljohani, A. F.
    PLOS ONE, 2024, 19 (10):
  • [48] Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross
    National Academy of Sciences of Ukraine
    不详
    不详
    J Autom Inform Sci, 2008, 6 (1-11):
  • [49] Solvability of Anti-periodic BVPs for Impulsive Fractional Differential Systems Involving Caputo and Riemann-Liouville Fractional Derivatives
    Liu, Yuji
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 125 - 152
  • [50] Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Elattar, Ehab E.
    Hamed, Y. S.
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 3058 - 3070