Complex Grunwald-Letnikov, Liouville, Riemann-Liouville, and Caputo derivatives for analytic functions

被引:32
|
作者
Ortigueira, Manuel D. [1 ]
Rodriguez-Germa, Luis [2 ]
Trujillo, Juan J. [2 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Elect Engn, UNINOVA, P-2825149 Quinta Da Torre, Monte Caparica, Portugal
[2] Univ La Laguna, Dept Anal Matemat, Tenerife 38271, Spain
关键词
Grunwald-Letnikov; Liouville; Riemann-Liouville; Caputo; Cauchy; Regularised derivative; FRACTIONAL DERIVATIVES; ORDER;
D O I
10.1016/j.cnsns.2011.02.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The well-known Liouville, Riemann-Liouville and Caputo derivatives are extended to the complex functions space, in a natural way, and it is established interesting connections between them and the Grunwald-Letnikov derivative. Particularly, starting from a complex formulation of the Grunwald-Letnikov derivative we establishes a bridge with existing integral formulations and obtained regularised integrals for Liouville, Riemann-Liouville, and Caputo derivatives. Moreover, it is shown that we can combine the procedures followed in the computation of Riemann-Liouville and Caputo derivatives with the Grunwald-Letnikov to obtain a new way of computing them. The theory we present here will surely open a new way into the fractional derivatives computation. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4174 / 4182
页数:9
相关论文
共 50 条
  • [1] On Riemann-Liouville and Caputo Derivatives
    Li, Changpin
    Qian, Deliang
    Chen, YangQuan
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [2] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [3] On the "walking dead" derivatives: Riemann-Liouville and Caputo
    Ortigueira, Manuel D.
    [J]. 2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [4] EQUIVALENCE OF INITIALIZED RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES
    Yuan, Jian
    Gao, Song
    Xiu, Guozhong
    Shi, Bao
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 2008 - 2023
  • [5] Complete infinitesimal prolongation of the Riemann-Liouville and Caputo derivatives
    Costa, Felix S.
    Soares, Junior C. A.
    Frederico, Gastao S. F.
    Sousa, J. Vanterler da C.
    Jarosz, S.
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2024, 36 (05)
  • [6] SOLUTION OF THE FRACTIONAL LIOUVILLE EQUATION BY USING RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES IN STATISTICAL MECHANICS
    Korichi, Z.
    Souigat, A.
    Bekhouche, R.
    Meftah, M. T.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (02) : 336 - 345
  • [7] Riemann-Liouville, Caputo, and Sequential Fractional Derivatives in Differential Games
    Chikrii, Arkadii
    Matychyn, Ivan
    [J]. ADVANCES IN DYNAMIC GAMES: THEORY, APPLICATIONS, AND NUMERICAL METHODS FOR DIFFERENTIAL AND STOCHASTIC GAMES: DEDICATED TO THE MEMORY OF ARIK A. MELIKYAN, 2011, 11 : 61 - 81
  • [8] Fractional differential repetitive processes with Riemann-Liouville and Caputo derivatives
    Idczak, Dariusz
    Kamocki, Rafal
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2015, 26 (01) : 193 - 206
  • [9] FPGA Realization of Caputo and Grunwald-Letnikov Operators
    Tolba, Mohammed F.
    AbdelAty, Amr M.
    Said, Lobna A.
    Elwakil, Ahmed S.
    Azar, Ahmad Taher
    Madian, Ahmed H.
    Ounnas, Adel
    Radwan, Ahmed G.
    [J]. 2017 6TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2017,
  • [10] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236