On the "walking dead" derivatives: Riemann-Liouville and Caputo

被引:0
|
作者
Ortigueira, Manuel D. [1 ,2 ]
机构
[1] Univ Nova Lisboa, Campus FCT, P-2825149 Caparica, Portugal
[2] Univ Nova Lisboa, Favulty Sci & Technol, P-2825149 Caparica, Portugal
关键词
SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Riemann-Liouville and Caputo derivatives are analysed in the context of the linear system theory. For it an analysis framework is presented. It is shown that those derivatives are unsuitable for studying the linear systems and in particular define transfer function.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] On Riemann-Liouville and Caputo Derivatives
    Li, Changpin
    Qian, Deliang
    Chen, YangQuan
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [2] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [3] EQUIVALENCE OF INITIALIZED RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES
    Yuan, Jian
    Gao, Song
    Xiu, Guozhong
    Shi, Bao
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 2008 - 2023
  • [4] Complete infinitesimal prolongation of the Riemann-Liouville and Caputo derivatives
    Costa, Felix S.
    Soares, Junior C. A.
    Frederico, Gastao S. F.
    Sousa, J. Vanterler da C.
    Jarosz, S.
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2024, 36 (05)
  • [5] Riemann-Liouville, Caputo, and Sequential Fractional Derivatives in Differential Games
    Chikrii, Arkadii
    Matychyn, Ivan
    [J]. ADVANCES IN DYNAMIC GAMES: THEORY, APPLICATIONS, AND NUMERICAL METHODS FOR DIFFERENTIAL AND STOCHASTIC GAMES: DEDICATED TO THE MEMORY OF ARIK A. MELIKYAN, 2011, 11 : 61 - 81
  • [6] Fractional differential repetitive processes with Riemann-Liouville and Caputo derivatives
    Idczak, Dariusz
    Kamocki, Rafal
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2015, 26 (01) : 193 - 206
  • [7] Complex Grunwald-Letnikov, Liouville, Riemann-Liouville, and Caputo derivatives for analytic functions
    Ortigueira, Manuel D.
    Rodriguez-Germa, Luis
    Trujillo, Juan J.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) : 4174 - 4182
  • [8] SOLUTION OF THE FRACTIONAL LIOUVILLE EQUATION BY USING RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES IN STATISTICAL MECHANICS
    Korichi, Z.
    Souigat, A.
    Bekhouche, R.
    Meftah, M. T.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (02) : 336 - 345
  • [9] On the Kolmogorov forward equations within Caputo and Riemann-Liouville fractions derivatives
    Alipour, Mohsen
    Baleanu, Dumitru
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (03): : 5 - 19
  • [10] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236