On the "walking dead" derivatives: Riemann-Liouville and Caputo

被引:0
|
作者
Ortigueira, Manuel D. [1 ,2 ]
机构
[1] Univ Nova Lisboa, Campus FCT, P-2825149 Caparica, Portugal
[2] Univ Nova Lisboa, Favulty Sci & Technol, P-2825149 Caparica, Portugal
关键词
SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Riemann-Liouville and Caputo derivatives are analysed in the context of the linear system theory. For it an analysis framework is presented. It is shown that those derivatives are unsuitable for studying the linear systems and in particular define transfer function.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Riemann-Liouville derivatives of abstract functions and Sobolev spaces
    Idczak, Dariusz
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (03) : 1260 - 1293
  • [42] CAUCHY PROBLEM FOR THE EQUATIONS WITH FRACTIONAL OF RIEMANN-LIOUVILLE DERIVATIVES
    Zabreiko, Petr P.
    Ponomareva, Svetlana, V
    [J]. DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2020, 64 (01): : 13 - 20
  • [43] Fractional Sobolev Spaces via Riemann-Liouville Derivatives
    Idczak, Dariusz
    Walczak, StanisBaw
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [44] On Riemann-Liouville operators
    Prokhorov, DV
    Stepanov, VD
    [J]. DOKLADY MATHEMATICS, 2002, 65 (01) : 64 - 67
  • [45] On Fully Mixed and Multidimensional Extensions of the Caputo and Riemann-Liouville Derivatives, Related Markov Processes and Fractional Differential Equations
    Vassili Kolokoltsov
    [J]. Fractional Calculus and Applied Analysis, 2015, 18 : 1039 - 1073
  • [46] On fallacies in the decision between the Caputo and Riemann-Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator
    Rossikhin, Yury A.
    Shitikova, Marina V.
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2012, 45 : 22 - 27
  • [47] Bicomplex Caputo Derivative: A Comparative Study with Bicomplex Riemann-Liouville Operators and Applications
    Goswami, Mahesh Puri
    Kumar, Raj
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2024, 94 (03) : 345 - 358
  • [48] Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator
    Alhussain, Ziyad A.
    Rebei, Habib
    Rguigui, Hafedh
    Riahi, Anis
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 435 - 449
  • [49] Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator
    Ziyad A. Alhussain
    Habib Rebei
    Hafedh Rguigui
    Anis Riahi
    [J]. São Paulo Journal of Mathematical Sciences, 2021, 15 : 435 - 449
  • [50] Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results
    Guirao, Juan L. G.
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Abualrub, Marwan S.
    [J]. AIMS MATHEMATICS, 2022, 7 (10): : 18127 - 18141