Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator

被引:0
|
作者
Ziyad A. Alhussain
Habib Rebei
Hafedh Rguigui
Anis Riahi
机构
[1] Majmaah University,Department of Mathematics, College of Science of Al
[2] Qassim University,Zulfi
[3] AL-Qunfudhah University College,Department of Mathematics, College of Science
[4] Umm Al-Qura University,Department of Mathematics
[5] Higher School of Sciences and Technologies of Hammam-Sousse,Department of Mathematics
[6] Sousse,undefined
[7] University,undefined
关键词
Liouville-Caputo time fractional evolution equation; Riemann-Liouville time fractional evolution equation; Number operator; Mittag–Leffler type functions; Nuclear space of holomorphic functions.;
D O I
暂无
中图分类号
学科分类号
摘要
By means of the Laplace transform, we give the solution of the generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations in infinite dimensions associated to the number operator. These solutions are given in terms of the Mittag-Leffler function and the convolution product.
引用
收藏
页码:435 / 449
页数:14
相关论文
共 50 条
  • [1] Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator
    Alhussain, Ziyad A.
    Rebei, Habib
    Rguigui, Hafedh
    Riahi, Anis
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 435 - 449
  • [2] Riemann-Liouville and Caputo Fractional Potentials Associated with the Number Operator
    Alhussain, Ziyad A.
    Rebei, Habib
    Rguigui, Hafedh
    Riahi, Anis
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (06)
  • [3] Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results
    Guirao, Juan L. G.
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Abualrub, Marwan S.
    AIMS MATHEMATICS, 2022, 7 (10): : 18127 - 18141
  • [4] Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Elattar, Ehab E.
    Hamed, Y. S.
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 3058 - 3070
  • [5] Riemann–Liouville and Caputo Fractional Potentials Associated with the Number Operator
    Ziyad A. Alhussain
    Habib Rebei
    Hafedh Rguigui
    Anis Riahi
    Complex Analysis and Operator Theory, 2022, 16
  • [6] Fractional Differential and Integral Equations of Riemann-Liouville versus Caputo
    Vatsala, A. S.
    Lakshmikantham, V.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 87 - +
  • [7] On the Approximate Controllability of Fractional Evolution Equations with Generalized Riemann-Liouville Fractional Derivative
    Mahmudov, N. I.
    McKibben, M. A.
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [8] Nonlinear sequential Riemann-Liouville and Caputo fractional differential equations with generalized fractional integral conditions
    Promsakon, Chanon
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [9] Probabilistic solutions to nonlinear fractional differential equations of generalized Caputo and Riemann-Liouville type
    Hernandez-Hernandez, M. E.
    Kolokoltsov, V. N.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2018, 90 (02) : 224 - 255
  • [10] Analysis of Caputo Sequential Fractional Differential Equations with Generalized Riemann-Liouville Boundary Conditions
    Gunasekaran, Nallappan
    Manigandan, Murugesan
    Vinoth, Seralan
    Vadivel, Rajarathinam
    FRACTAL AND FRACTIONAL, 2024, 8 (08)