Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator

被引:0
|
作者
Ziyad A. Alhussain
Habib Rebei
Hafedh Rguigui
Anis Riahi
机构
[1] Majmaah University,Department of Mathematics, College of Science of Al
[2] Qassim University,Zulfi
[3] AL-Qunfudhah University College,Department of Mathematics, College of Science
[4] Umm Al-Qura University,Department of Mathematics
[5] Higher School of Sciences and Technologies of Hammam-Sousse,Department of Mathematics
[6] Sousse,undefined
[7] University,undefined
关键词
Liouville-Caputo time fractional evolution equation; Riemann-Liouville time fractional evolution equation; Number operator; Mittag–Leffler type functions; Nuclear space of holomorphic functions.;
D O I
暂无
中图分类号
学科分类号
摘要
By means of the Laplace transform, we give the solution of the generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations in infinite dimensions associated to the number operator. These solutions are given in terms of the Mittag-Leffler function and the convolution product.
引用
收藏
页码:435 / 449
页数:14
相关论文
共 50 条
  • [41] INEQUALITIES GENERATED WITH RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR
    Gurbuz, M.
    Ozturk, O.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 91 - 100
  • [42] EXISTENCE OF POSITIVE SOLUTIONS FOR DIFFERENTIAL EQUATIONS INVOLVING RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Li, Yunhong
    Li, Yan
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018, Mathematical Research Press (2018):
  • [43] Caputo type fractional differential equations with nonlocal Riemann-Liouville integral boundary conditions
    Ahmad B.
    Ntouyas S.K.
    Assolami A.
    Journal of Applied Mathematics and Computing, 2013, 41 (1-2) : 339 - 350
  • [44] Data for numerical solution of Caputo's and Riemann-Liouville's fractional differential equations
    Betancur-Herrera, David E.
    Munoz-Galeano, Nicolas
    DATA IN BRIEF, 2020, 30
  • [45] Generalized Liouville-Caputo Fractional Differential Equations and Inclusions with Nonlocal Generalized Fractional Integral and Multipoint Boundary Conditions
    Alsaedi, Ahmed
    Alghanmi, Madeaha
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    SYMMETRY-BASEL, 2018, 10 (12):
  • [46] Existence and regularity of solutions for evolution equations with Riemann-Liouville fractional derivatives
    Fan, Zhenbin
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (03): : 516 - 524
  • [47] Best Approximations of Solutions of Fractional-integral Equations with the Riemann-Liouville Operator
    J. R. Agachev
    A. F. Galimyanov
    R. K. Gubaidullina
    Lobachevskii Journal of Mathematics, 2019, 40 : 1231 - 1241
  • [48] Best Approximations of Solutions of Fractional-integral Equations with the Riemann-Liouville Operator
    Agachev, J. R.
    Galimyanov, A. F.
    Gubaidullina, R. K.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (09) : 1231 - 1241
  • [49] Fractional Order Riemann-Liouville Integral Equations with Multiple Time Delays
    Abbas, Said
    Benchohra, Mouffak
    APPLIED MATHEMATICS E-NOTES, 2012, 12 : 79 - 87
  • [50] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    FIXED POINT THEORY, 2012, 13 (02): : 329 - 336