Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator

被引:0
|
作者
Ziyad A. Alhussain
Habib Rebei
Hafedh Rguigui
Anis Riahi
机构
[1] Majmaah University,Department of Mathematics, College of Science of Al
[2] Qassim University,Zulfi
[3] AL-Qunfudhah University College,Department of Mathematics, College of Science
[4] Umm Al-Qura University,Department of Mathematics
[5] Higher School of Sciences and Technologies of Hammam-Sousse,Department of Mathematics
[6] Sousse,undefined
[7] University,undefined
关键词
Liouville-Caputo time fractional evolution equation; Riemann-Liouville time fractional evolution equation; Number operator; Mittag–Leffler type functions; Nuclear space of holomorphic functions.;
D O I
暂无
中图分类号
学科分类号
摘要
By means of the Laplace transform, we give the solution of the generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations in infinite dimensions associated to the number operator. These solutions are given in terms of the Mittag-Leffler function and the convolution product.
引用
收藏
页码:435 / 449
页数:14
相关论文
共 50 条
  • [21] Existence results for Riemann-Liouville fractional neutral evolution equations
    Liu, Yi-Liang
    Lv, Jing-Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [22] Generalized homogeneous Besov spaces associated with the Riemann-Liouville operator
    Hamadi, N. B.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (02)
  • [23] Existence results for Riemann-Liouville fractional neutral evolution equations
    Yi-Liang Liu
    Jing-Yun Lv
    Advances in Difference Equations, 2014
  • [24] Fractional Hunter-Saxton equation involving partial operators with bi-order in Riemann-Liouville and Liouville-Caputo sense
    J. F. Gómez-Aguilar
    Abdon Atangana
    The European Physical Journal Plus, 132
  • [25] Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives
    Khan, Aziz
    Syam, Muhammed I.
    Zada, Akbar
    Khan, Hasib
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (07):
  • [26] Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives
    Aziz Khan
    Muhammed I. Syam
    Akbar Zada
    Hasib Khan
    The European Physical Journal Plus, 133
  • [27] On a System of Coupled Langevin Equations in the Frame of Generalized Liouville-Caputo Fractional Derivatives
    Salman, Hassan J. Al
    Awadalla, Muath
    Subramanian, Muthaiah
    Abuasbeh, Kinda
    SYMMETRY-BASEL, 2023, 15 (01):
  • [28] Space-Time Fractional Reaction-Diffusion Equations Associated with a Generalized Riemann-Liouville Fractional Derivative
    Saxena, Ram K.
    Mathai, Arak M.
    Haubold, Hans J.
    AXIOMS, 2014, 3 (03) : 320 - 334
  • [29] Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative
    Sandev, Trifce
    Metzler, Ralf
    Tomovski, Zivorad
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (25)
  • [30] Lipschitz Stability in Time for Riemann-Liouville Fractional Differential Equations
    Hristova, Snezhana
    Tersian, Stepan
    Terzieva, Radoslava
    FRACTAL AND FRACTIONAL, 2021, 5 (02)