Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator

被引:0
|
作者
Ziyad A. Alhussain
Habib Rebei
Hafedh Rguigui
Anis Riahi
机构
[1] Majmaah University,Department of Mathematics, College of Science of Al
[2] Qassim University,Zulfi
[3] AL-Qunfudhah University College,Department of Mathematics, College of Science
[4] Umm Al-Qura University,Department of Mathematics
[5] Higher School of Sciences and Technologies of Hammam-Sousse,Department of Mathematics
[6] Sousse,undefined
[7] University,undefined
关键词
Liouville-Caputo time fractional evolution equation; Riemann-Liouville time fractional evolution equation; Number operator; Mittag–Leffler type functions; Nuclear space of holomorphic functions.;
D O I
暂无
中图分类号
学科分类号
摘要
By means of the Laplace transform, we give the solution of the generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations in infinite dimensions associated to the number operator. These solutions are given in terms of the Mittag-Leffler function and the convolution product.
引用
收藏
页码:435 / 449
页数:14
相关论文
共 50 条
  • [31] Fuzzy differential equations with Riemann-Liouville generalized fractional integrable impulses
    Truong Vinh An
    Ngo Van Hoa
    FUZZY SETS AND SYSTEMS, 2022, 429 : 74 - 100
  • [32] SOLUTION OF THE FRACTIONAL LIOUVILLE EQUATION BY USING RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES IN STATISTICAL MECHANICS
    Korichi, Z.
    Souigat, A.
    Bekhouche, R.
    Meftah, M. T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (02) : 336 - 345
  • [33] GENERALIZED EXTENSION OF THE QUASILINEARIZATION METHOD FOR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS
    Denton, Zachary
    DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (2-3): : 333 - 349
  • [34] Implicit Fractional Differential Equations via the Liouville-Caputo Derivative
    Nieto, Juan J.
    Ouahab, Abelghani
    Venktesh, Venktesh
    MATHEMATICS, 2015, 3 (02): : 398 - 411
  • [35] Riemann-Liouville, Caputo, and Sequential Fractional Derivatives in Differential Games
    Chikrii, Arkadii
    Matychyn, Ivan
    ADVANCES IN DYNAMIC GAMES: THEORY, APPLICATIONS, AND NUMERICAL METHODS FOR DIFFERENTIAL AND STOCHASTIC GAMES: DEDICATED TO THE MEMORY OF ARIK A. MELIKYAN, 2011, 11 : 61 - 81
  • [36] Fractional standard map: Riemann-Liouville vs. Caputo
    Edelman, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (12) : 4573 - 4580
  • [37] Fractional differential repetitive processes with Riemann-Liouville and Caputo derivatives
    Idczak, Dariusz
    Kamocki, Rafal
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2015, 26 (01) : 193 - 206
  • [38] On Riemann-Liouville and Caputo Fractional Forward Difference Monotonicity Analysis
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Hamasalh, Faraidun Kadir
    MATHEMATICS, 2021, 9 (11)
  • [39] ON A CERTAIN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATOR
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Tomovski, Zivorad
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 507 - 522
  • [40] THE HARNACK INEQUALITY FOR THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATION OPERATOR
    Zacher, Rico
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (01): : 35 - 43