Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results

被引:9
|
作者
Guirao, Juan L. G. [1 ,2 ]
Mohammed, Pshtiwan Othman [3 ]
Srivastava, Hari Mohan [4 ,5 ,6 ,7 ]
Baleanu, Dumitru [8 ,9 ,10 ]
Abualrub, Marwan S. [11 ]
机构
[1] Univ Politecn Cartagena, Dept Matemaca Aplicada & Estadist, Cartagena 30202, Spain
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[3] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani 46001, Iraq
[4] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[6] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, Baku 1007, Azerbaijan
[7] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[8] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[9] Inst Space Sci, R-76900 Magurele, Romania
[10] Lebanese Amer Univ, Sch Arts & Sci, Dept Nat Sci, Beirut 11022, Lebanon
[11] Khalifa Univ, Fac Sci, Math Dept 11, Prep Program, POB 127788, Abu Dhabi, U Arab Emirates
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 10期
关键词
Riemann-Liouville fractional difference; Liouville-Caputo fractional difference; convexity analysis; MONOTONICITY; CALCULUS;
D O I
10.3934/math.2022997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we have presented two new alternative definitions corresponding to the basic definitions of the discrete delta and nabla fractional difference operators. These definitions and concepts help us in establishing a relationship between Riemann-Liouville and Liouville-Caputo fractional differences of higher orders for both delta and nabla operators. We then propose and analyse some convexity results for the delta and nabla fractional differences of the Riemann-Liouville type. We also derive similar results for the delta and nabla fractional differences of Liouville-Caputo type by using the proposed relationships. Finally, we have presented two examples to confirm the main theorems.
引用
收藏
页码:18127 / 18141
页数:15
相关论文
共 50 条
  • [1] Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Elattar, Ehab E.
    Hamed, Y. S.
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 3058 - 3070
  • [2] Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator
    Ziyad A. Alhussain
    Habib Rebei
    Hafedh Rguigui
    Anis Riahi
    [J]. São Paulo Journal of Mathematical Sciences, 2021, 15 : 435 - 449
  • [3] Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator
    Alhussain, Ziyad A.
    Rebei, Habib
    Rguigui, Hafedh
    Riahi, Anis
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 435 - 449
  • [4] On convexity analysis for discrete delta Riemann-Liouville fractional differences analytically and numerically
    Baleanu, Dumitru
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Al-Sarairah, Eman
    Abdeljawad, Thabet
    Hamed, Y. S.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [5] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [6] Riemann-Liouville and Caputo Fractional Potentials Associated with the Number Operator
    Alhussain, Ziyad A.
    Rebei, Habib
    Rguigui, Hafedh
    Riahi, Anis
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (06)
  • [7] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236
  • [8] Monotonicity Results for Nabla Riemann-Liouville Fractional Differences
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Balea, Itru
    Jan, Rashid
    Abualnaja, Khadijah M.
    [J]. MATHEMATICS, 2022, 10 (14)
  • [9] Fractional Hunter-Saxton equation involving partial operators with bi-order in Riemann-Liouville and Liouville-Caputo sense
    Gomez-Aguilar, J. F.
    Atangana, Abdon
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (02):
  • [10] On Riemann-Liouville and Caputo Derivatives
    Li, Changpin
    Qian, Deliang
    Chen, YangQuan
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011