Complete infinitesimal prolongation of the Riemann-Liouville and Caputo derivatives

被引:1
|
作者
Costa, Felix S. [1 ]
Soares, Junior C. A. [2 ]
Frederico, Gastao S. F. [3 ]
Sousa, J. Vanterler da C. [1 ]
Jarosz, S. [4 ]
机构
[1] Univ Estadual Maranhao, Dept Math, Aerosp Engn, BR-65055310 Sao Luis, MA, Brazil
[2] Univ Estado Mato Grosso, Dept Math, BR-78390970 Barra Bugres, MT, Brazil
[3] Univ Fed Ceara, Campus Russas, BR-62900000 Russas, CE, Brazil
[4] Univ Estadual Campinas, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
关键词
Fractional Lie point symmetry group; fractional infinitesimal prolongation; non local Lie symmetries; LIE GROUP; EQUATION;
D O I
10.1142/S0129055X24500089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents the infinitesimal prolongation to Riemann-Liouville and Caputo fractional derivatives without the restrictive lower limit fixed in the integrals, when applicated to the transformation group. The properties are presented, and the examples are illustrated along with the symmetry to fractional derivative criteria.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] On Riemann-Liouville and Caputo Derivatives
    Li, Changpin
    Qian, Deliang
    Chen, YangQuan
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [2] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [3] On the "walking dead" derivatives: Riemann-Liouville and Caputo
    Ortigueira, Manuel D.
    [J]. 2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [4] EQUIVALENCE OF INITIALIZED RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES
    Yuan, Jian
    Gao, Song
    Xiu, Guozhong
    Shi, Bao
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 2008 - 2023
  • [5] Riemann-Liouville, Caputo, and Sequential Fractional Derivatives in Differential Games
    Chikrii, Arkadii
    Matychyn, Ivan
    [J]. ADVANCES IN DYNAMIC GAMES: THEORY, APPLICATIONS, AND NUMERICAL METHODS FOR DIFFERENTIAL AND STOCHASTIC GAMES: DEDICATED TO THE MEMORY OF ARIK A. MELIKYAN, 2011, 11 : 61 - 81
  • [6] Fractional differential repetitive processes with Riemann-Liouville and Caputo derivatives
    Idczak, Dariusz
    Kamocki, Rafal
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2015, 26 (01) : 193 - 206
  • [7] Complex Grunwald-Letnikov, Liouville, Riemann-Liouville, and Caputo derivatives for analytic functions
    Ortigueira, Manuel D.
    Rodriguez-Germa, Luis
    Trujillo, Juan J.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) : 4174 - 4182
  • [8] SOLUTION OF THE FRACTIONAL LIOUVILLE EQUATION BY USING RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES IN STATISTICAL MECHANICS
    Korichi, Z.
    Souigat, A.
    Bekhouche, R.
    Meftah, M. T.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (02) : 336 - 345
  • [9] On the Kolmogorov forward equations within Caputo and Riemann-Liouville fractions derivatives
    Alipour, Mohsen
    Baleanu, Dumitru
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (03): : 5 - 19
  • [10] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236