Complete infinitesimal prolongation of the Riemann-Liouville and Caputo derivatives

被引:1
|
作者
Costa, Felix S. [1 ]
Soares, Junior C. A. [2 ]
Frederico, Gastao S. F. [3 ]
Sousa, J. Vanterler da C. [1 ]
Jarosz, S. [4 ]
机构
[1] Univ Estadual Maranhao, Dept Math, Aerosp Engn, BR-65055310 Sao Luis, MA, Brazil
[2] Univ Estado Mato Grosso, Dept Math, BR-78390970 Barra Bugres, MT, Brazil
[3] Univ Fed Ceara, Campus Russas, BR-62900000 Russas, CE, Brazil
[4] Univ Estadual Campinas, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
关键词
Fractional Lie point symmetry group; fractional infinitesimal prolongation; non local Lie symmetries; LIE GROUP; EQUATION;
D O I
10.1142/S0129055X24500089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents the infinitesimal prolongation to Riemann-Liouville and Caputo fractional derivatives without the restrictive lower limit fixed in the integrals, when applicated to the transformation group. The properties are presented, and the examples are illustrated along with the symmetry to fractional derivative criteria.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Analytical Solution of Linear Fractional Systems with Variable Coefficients Involving Riemann-Liouville and Caputo Derivatives
    Matychyn, Ivan
    [J]. SYMMETRY-BASEL, 2019, 11 (11):
  • [32] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Tohru Morita
    Ken-ichi Sato
    [J]. Fractional Calculus and Applied Analysis, 2013, 16 : 630 - 653
  • [33] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Morita, Tohru
    Sato, Ken-ichi
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 630 - 653
  • [34] Riemann-Liouville and Caputo type multiple Erdelyi-Kober operators
    Kiryakova, Virginia
    Luchko, Yuri
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1314 - 1336
  • [35] Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross
    Chikriy, A. A.
    Matichin, I. I.
    [J]. JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2008, 40 (06) : 1 - 11
  • [36] Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross
    National Academy of Sciences of Ukraine
    不详
    不详
    [J]. J Autom Inform Sci, 2008, 6 (1-11):
  • [37] Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Elattar, Ehab E.
    Hamed, Y. S.
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 3058 - 3070
  • [38] Fractional diffusion based on Riemann-Liouville fractional derivatives
    Hilfer, R
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16): : 3914 - 3917
  • [39] Diffusive representation of Riemann-Liouville fractional integrals and derivatives
    Guo, Yuxiang
    Ma, Baoli
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11335 - 11339
  • [40] Riemann-Liouville derivatives of abstract functions and Sobolev spaces
    Dariusz Idczak
    [J]. Fractional Calculus and Applied Analysis, 2022, 25 : 1260 - 1293