On Solutions of Fractional Integrodifferential Systems Involving ψ-Caputo Derivative and ψ-Riemann-Liouville Fractional Integral

被引:0
|
作者
Boulares, Hamid [1 ]
Moumen, Abdelkader [2 ]
Fernane, Khaireddine [1 ]
Alzabut, Jehad [3 ,4 ]
Saber, Hicham [2 ]
Alraqad, Tariq [2 ]
Benaissa, Mhamed [5 ]
机构
[1] Univ 8 May 1945 Guelma, Fac MISM, Dept Math, Lab Anal & Control Differential Equat ACED, POB 401, Guelma 24000, Algeria
[2] Univ Hail, Fac Sci, Dept Math, Hail 55425, Saudi Arabia
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[4] OSTIM Tech Univ, Dept Ind Engn, TR-06374 Ankara, Turkiye
[5] Univ Hail, Coll Engn, Chem Engn Dept, Hail 81441, Saudi Arabia
关键词
psi-Caputo derivative; psi-Riemann-Liouville fractional integral; monotone sequences; upper and lower solutions; Arzela-Ascoli theorem; COUPLED SYSTEM; DIFFERENTIAL-EQUATIONS; ORDER; EXISTENCE; UNIQUENESS; OPERATOR; SCHEME;
D O I
10.3390/math11061465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a new class of nonlinear fractional integrodifferential systems that includes the ?-Riemann-Liouville fractional integral term. Using the technique of upper and lower solutions, the solvability of the system is examined. We add two examples to demonstrate and validate the main result. The main results highlight crucial contributions to the general theory of fractional differential equations.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Ground state solutions for the fractional impulsive differential system with ψ-Caputo fractional derivative and ψ-Riemann-Liouville fractional integral
    Li, Dongping
    Li, Yankai
    Feng, Xiaozhou
    Li, Changtong
    Wang, Yuzhen
    Gao, Jie
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8434 - 8448
  • [2] Solutions to Riemann-Liouville fractional integrodifferential equations via fractional resolvents
    Ji, Shaochun
    Yang, Dandan
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [3] Fractional Differential and Integral Equations of Riemann-Liouville versus Caputo
    Vatsala, A. S.
    Lakshmikantham, V.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 87 - +
  • [4] Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems
    Borisut, Piyachat
    Kumam, Poom
    Ahmed, Idris
    Sitthithakerngkiet, Kanokwan
    SYMMETRY-BASEL, 2019, 11 (06):
  • [5] EXISTENCE OF POSITIVE SOLUTIONS FOR DIFFERENTIAL EQUATIONS INVOLVING RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Li, Yunhong
    Li, Yan
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018, Mathematical Research Press (2018):
  • [6] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [7] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [8] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236
  • [9] Fractional equations of Volterra type involving a Riemann-Liouville derivative
    Jankowski, Tadeusz
    APPLIED MATHEMATICS LETTERS, 2013, 26 (03) : 344 - 350
  • [10] RIEMANN-STIELTJES INTEGRAL BOUNDARY VALUE PROBLEMS INVOLVING MIXED RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Ahmad, Bashir
    Alruwaily, Ymnah
    Alsaedi, Ahmed
    Ntouyas, Sotiris K.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,