Ground state solutions for the fractional impulsive differential system with ψ-Caputo fractional derivative and ψ-Riemann-Liouville fractional integral

被引:1
|
作者
Li, Dongping [1 ]
Li, Yankai [2 ,3 ]
Feng, Xiaozhou [1 ]
Li, Changtong [1 ]
Wang, Yuzhen [1 ]
Gao, Jie [1 ]
机构
[1] Xian Technol Univ, Sch Sci, Xian, Peoples R China
[2] Xian Univ Technol, Sch Automat & Informat Engn, Xian, Peoples R China
[3] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
psi-Caputo fractional derivative; psi--Riemann-Liouville fractional integral; ground state solution; Nehari manifold; RESPECT;
D O I
10.1002/mma.10023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article examines a new family of (p,q)-Laplacian type nonlinear fractional impulsive differential coupled equations involving both the psi-Caputo fractional derivative and psi-Riemann-Liouville fractional integral. With the help of Neharimani fold in critical point theory and fractional calculus properties, we obtain the existence of at least one nontrivial ground state solution for the coupled system with some natural and easily verifiable super linear conditions on the nonlinearity.
引用
下载
收藏
页码:8434 / 8448
页数:15
相关论文
共 50 条
  • [1] On Solutions of Fractional Integrodifferential Systems Involving ψ-Caputo Derivative and ψ-Riemann-Liouville Fractional Integral
    Boulares, Hamid
    Moumen, Abdelkader
    Fernane, Khaireddine
    Alzabut, Jehad
    Saber, Hicham
    Alraqad, Tariq
    Benaissa, Mhamed
    MATHEMATICS, 2023, 11 (06)
  • [2] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236
  • [3] Fractional Differential and Integral Equations of Riemann-Liouville versus Caputo
    Vatsala, A. S.
    Lakshmikantham, V.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 87 - +
  • [4] Nonlinear sequential Riemann-Liouville and Caputo fractional differential equations with generalized fractional integral conditions
    Promsakon, Chanon
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [5] Existence Results for Sequential Riemann-Liouville and Caputo Fractional Differential Inclusions with Generalized Fractional Integral Conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Ahmad, Bashir
    Alsaedi, Ahmed
    MATHEMATICS, 2020, 8 (06)
  • [6] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [7] Impulsive Multiorders Riemann-Liouville Fractional Differential Equations
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [8] RIEMANN LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENTIAL AND INTEGRAL INEQUALITIES
    Stutson, Donna S.
    Vatsala, Aghalaya S.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (04): : 723 - 733
  • [9] Stability analysis of fractional differential system with Riemann-Liouville derivative
    Qian, Deliang
    Li, Changpin
    Agarwal, Ravi P.
    Wong, Patricia J. Y.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 862 - 874
  • [10] Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems
    Borisut, Piyachat
    Kumam, Poom
    Ahmed, Idris
    Sitthithakerngkiet, Kanokwan
    SYMMETRY-BASEL, 2019, 11 (06):