Existence Results for Sequential Riemann-Liouville and Caputo Fractional Differential Inclusions with Generalized Fractional Integral Conditions

被引:7
|
作者
Tariboon, Jessada [1 ]
Ntouyas, Sotiris K. [2 ,3 ]
Ahmad, Bashir [3 ]
Alsaedi, Ahmed [3 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Riemann-Liouville fractional derivative; Caputo fractional derivative; inclusions; endpoint theory; generalized fractional integral; Krasnosel'skii's multi-valued fixed point theorem; Wegrzyk's fixed point theorem; HADAMARD; SYSTEMS; ORDER;
D O I
10.3390/math8061044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under different criteria, we prove the existence of solutions for sequential fractional differential inclusions containing Riemann-Liouville and Caputo type derivatives and supplemented with generalized fractional integral boundary conditions. Our existence results rely on the endpoint theory, the Krasnosel'skii's fixed point theorem for multivalued maps and Wegrzyk's fixed point theorem for generalized contractions. We demonstrate the application of the obtained results with the help of examples.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Nonlinear sequential Riemann-Liouville and Caputo fractional differential equations with generalized fractional integral conditions
    Promsakon, Chanon
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [2] Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann-Liouville Boundary Conditions
    Manigandan, Murugesan
    Shanmugam, Saravanan
    Rhaima, Mohamed
    Sekar, Elango
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [3] Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Alghamdi, Badrah
    Alsaedi, Ahmed
    Ntouyas, K. Sotiris
    [J]. AIMS MATHEMATICS, 2021, 6 (07): : 7093 - 7110
  • [4] Nonlinear sequential Riemann–Liouville and Caputo fractional differential equations with generalized fractional integral conditions
    Chanon Promsakon
    Nawapol Phuangthong
    Sotiris K. Ntouyas
    Jessada Tariboon
    [J]. Advances in Difference Equations, 2018
  • [5] Analysis of Caputo Sequential Fractional Differential Equations with Generalized Riemann-Liouville Boundary Conditions
    Gunasekaran, Nallappan
    Manigandan, Murugesan
    Vinoth, Seralan
    Vadivel, Rajarathinam
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [6] EXISTENCE OF SOLUTIONS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS WITH NONLOCAL RIEMANN-LIOUVILLE INTEGRAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Ntouyas, Sotiris
    [J]. MATHEMATICA BOHEMICA, 2014, 139 (03): : 451 - 465
  • [7] On a sequential fractional differential problem with Riemann-Liouville integral conditions
    Benmehidi, Hammou
    Dahmani, Zoubir
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (04) : 893 - 915
  • [8] NONLINEAR SEQUENTIAL RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL AND INTEGRAL BOUNDARY CONDITIONS
    Asawasamrit, Suphawat
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (01): : 47 - 63
  • [9] EXISTENCE RESULTS FOR RIEMANN-LIOUVILLE FRACTIONAL EVOLUTION INCLUSIONS
    Huang, Yong
    Lv, Jingyun
    Liu, Zhenhai
    [J]. MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 305 - 325
  • [10] Riemann-Liouville, Caputo, and Sequential Fractional Derivatives in Differential Games
    Chikrii, Arkadii
    Matychyn, Ivan
    [J]. ADVANCES IN DYNAMIC GAMES: THEORY, APPLICATIONS, AND NUMERICAL METHODS FOR DIFFERENTIAL AND STOCHASTIC GAMES: DEDICATED TO THE MEMORY OF ARIK A. MELIKYAN, 2011, 11 : 61 - 81