On a sequential fractional differential problem with Riemann-Liouville integral conditions

被引:0
|
作者
Benmehidi, Hammou [1 ,2 ]
Dahmani, Zoubir [2 ]
机构
[1] Univ Tiaret, Dept Nat & Life Sci, Tiaret 14000, Algeria
[2] Univ Mostaganem, Fac Exact Sci & Informat FSEI, Lab Pure & Appl Maths LPAM, Mostaganem 27000, Algeria
关键词
Caputo derivative; Fixed point; Existence; Sequential differential equation; INEQUALITIES;
D O I
10.1080/09720502.2020.1861789
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with a new boundary value problem of sequential fractional type with nonlocal Riemann-Liouville integral conditions. Using the principle of Banach, so we present and we establish a new result for the uniqueness of integrals for our problem. Then, by Schaeffer fixed point theorem, an existence result is proved. At the end, some examples are illustrated and then discussed.
引用
收藏
页码:893 / 915
页数:23
相关论文
共 50 条
  • [1] Nonlinear sequential Riemann-Liouville and Caputo fractional differential equations with generalized fractional integral conditions
    Promsakon, Chanon
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [2] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [3] Existence Results for Sequential Riemann-Liouville and Caputo Fractional Differential Inclusions with Generalized Fractional Integral Conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Ahmad, Bashir
    Alsaedi, Ahmed
    [J]. MATHEMATICS, 2020, 8 (06)
  • [4] NONLINEAR SEQUENTIAL RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL AND INTEGRAL BOUNDARY CONDITIONS
    Asawasamrit, Suphawat
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (01): : 47 - 63
  • [5] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Jessada Tariboon
    Sotiris K Ntouyas
    Weerawat Sudsutad
    [J]. Boundary Value Problems, 2014
  • [6] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    [J]. BOUNDARY VALUE PROBLEMS, 2014,
  • [7] Sequential Riemann-Liouville and Hadamard-Caputo Fractional Differential Systems with Nonlocal Coupled Fractional Integral Boundary Conditions
    Kiataramkul, Chanakarn
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. AXIOMS, 2021, 10 (03)
  • [8] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    [J]. FIXED POINT THEORY, 2012, 13 (02): : 329 - 336
  • [9] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Nieto, Juan J.
    [J]. BOUNDARY VALUE PROBLEMS, 2011, : 1 - 9
  • [10] Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 295 - 308