Sequential Riemann-Liouville and Hadamard-Caputo Fractional Differential Systems with Nonlocal Coupled Fractional Integral Boundary Conditions

被引:15
|
作者
Kiataramkul, Chanakarn [1 ]
Yukunthorn, Weera [2 ]
Ntouyas, Sotiris K. [3 ,4 ]
Tariboon, Jessada [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Bangkok 10800, Thailand
[2] Kanchanaburi Rajabhat Univ, Fac Sci & Technol, Kanchanaburi 71000, Thailand
[3] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[4] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM,Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
关键词
coupled systems; Riemann-Liouville fractional derivative; Hadamard-Caputo fractional derivative; nonlocal boundary conditions; existence; fixed point; EQUATIONS;
D O I
10.3390/axioms10030174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we initiate the study of existence of solutions for a fractional differential system which contains mixed Riemann-Liouville and Hadamard-Caputo fractional derivatives, complemented with nonlocal coupled fractional integral boundary conditions. We derive necessary conditions for the existence and uniqueness of solutions of the considered system, by using standard fixed point theorems, such as Banach contraction mapping principle and Leray-Schauder alternative. Numerical examples illustrating the obtained results are also presented.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Sequential Riemann-Liouville and Hadamard-Caputo Fractional Differential Equation with Iterated Fractional Integrals Conditions
    Ntouyas, Sotiris K.
    Sitho, Surang
    Khoployklang, Teerasak
    Tariboon, Jessada
    [J]. AXIOMS, 2021, 10 (04)
  • [2] Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 295 - 308
  • [3] NONLINEAR SEQUENTIAL RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL AND INTEGRAL BOUNDARY CONDITIONS
    Asawasamrit, Suphawat
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (01): : 47 - 63
  • [4] Caputo type fractional differential equations with nonlocal Riemann-Liouville integral boundary conditions
    Ahmad B.
    Ntouyas S.K.
    Assolami A.
    [J]. Journal of Applied Mathematics and Computing, 2013, 41 (1-2) : 339 - 350
  • [5] Boundary Value Problems for Riemann-Liouville Fractional Differential Inclusions with Nonlocal Hadamard Fractional Integral Conditions
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Sudsutad, Weerawat
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (03) : 939 - 954
  • [6] Nonlocal Boundary Value Problems for Riemann-Liouville Fractional Differential Inclusions with Hadamard Fractional Integral Boundary Conditions
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Thaiprayoon, Chatthai
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (01): : 91 - 107
  • [7] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Jessada Tariboon
    Sotiris K Ntouyas
    Weerawat Sudsutad
    [J]. Boundary Value Problems, 2014
  • [8] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    [J]. BOUNDARY VALUE PROBLEMS, 2014,
  • [9] Positive solutions for fractional differential systems with nonlocal Riemann-Liouville fractional integral boundary conditions
    Neamprem, Khomsan
    Muensawat, Thanadon
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. POSITIVITY, 2017, 21 (03) : 825 - 845
  • [10] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134