Charging and Discharging RCα Circuit Under Riemann-Liouville and Caputo Fractional Derivatives

被引:0
|
作者
AbdelAty, Amr M. [1 ]
Radwan, Ahmed G. [2 ,3 ]
Ahmed, Waleed A. [1 ]
Faied, Mariam [4 ]
机构
[1] Fayoum Univ, Dept Engn Math & Phys, Fac Engn, Al Fayyum, Egypt
[2] Cairo Univ, Fac Engn, Dept Engn Math & Phys, Giza 12613, Egypt
[3] Nile Univ, NISC, Giza, Egypt
[4] Fayoum Univ, Fac Engn, Dept Elect Engn, Al Fayyum, Egypt
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the effect of non-zero initial condition on the time domain responses of fractional-order systems using Caputo and Riemann-Liouville (RL) fractional definitions are discussed. Analytical formulas were derived for the step and square wave responses of fractional-order RC alpha circuit under RL and Caputo operators for non-zero initial condition. Moreover, a simulation scheme for fractional state-space systems with non-zero initial condition is introduced.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [2] On Riemann-Liouville and Caputo Derivatives
    Li, Changpin
    Qian, Deliang
    Chen, YangQuan
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [3] Riemann-Liouville, Caputo, and Sequential Fractional Derivatives in Differential Games
    Chikrii, Arkadii
    Matychyn, Ivan
    ADVANCES IN DYNAMIC GAMES: THEORY, APPLICATIONS, AND NUMERICAL METHODS FOR DIFFERENTIAL AND STOCHASTIC GAMES: DEDICATED TO THE MEMORY OF ARIK A. MELIKYAN, 2011, 11 : 61 - 81
  • [4] Fractional differential repetitive processes with Riemann-Liouville and Caputo derivatives
    Idczak, Dariusz
    Kamocki, Rafal
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2015, 26 (01) : 193 - 206
  • [5] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236
  • [6] SOLUTION OF THE FRACTIONAL LIOUVILLE EQUATION BY USING RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES IN STATISTICAL MECHANICS
    Korichi, Z.
    Souigat, A.
    Bekhouche, R.
    Meftah, M. T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (02) : 336 - 345
  • [7] On the "walking dead" derivatives: Riemann-Liouville and Caputo
    Ortigueira, Manuel D.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [8] EQUIVALENCE OF INITIALIZED RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES
    Yuan, Jian
    Gao, Song
    Xiu, Guozhong
    Shi, Bao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 2008 - 2023
  • [9] Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives
    Sene, Ndolane
    AIMS MATHEMATICS, 2019, 4 (01): : 147 - 165
  • [10] Objectivity Lost when Riemann-Liouville or Caputo Fractional Order Derivatives Are Used
    Balint, Agneta M.
    Balint, Stefan
    TIM18 PHYSICS CONFERENCE, 2019, 2071