Charging and Discharging RCα Circuit Under Riemann-Liouville and Caputo Fractional Derivatives

被引:0
|
作者
AbdelAty, Amr M. [1 ]
Radwan, Ahmed G. [2 ,3 ]
Ahmed, Waleed A. [1 ]
Faied, Mariam [4 ]
机构
[1] Fayoum Univ, Dept Engn Math & Phys, Fac Engn, Al Fayyum, Egypt
[2] Cairo Univ, Fac Engn, Dept Engn Math & Phys, Giza 12613, Egypt
[3] Nile Univ, NISC, Giza, Egypt
[4] Fayoum Univ, Fac Engn, Dept Elect Engn, Al Fayyum, Egypt
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the effect of non-zero initial condition on the time domain responses of fractional-order systems using Caputo and Riemann-Liouville (RL) fractional definitions are discussed. Analytical formulas were derived for the step and square wave responses of fractional-order RC alpha circuit under RL and Caputo operators for non-zero initial condition. Moreover, a simulation scheme for fractional state-space systems with non-zero initial condition is introduced.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Riemann-Liouville and Caputo Fractional Potentials Associated with the Number Operator
    Alhussain, Ziyad A.
    Rebei, Habib
    Rguigui, Hafedh
    Riahi, Anis
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (06)
  • [22] Fractional standard map: Riemann-Liouville vs. Caputo
    Edelman, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (12) : 4573 - 4580
  • [23] Fractional Differential and Integral Equations of Riemann-Liouville versus Caputo
    Vatsala, A. S.
    Lakshmikantham, V.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 87 - +
  • [24] Fractional diffusion based on Riemann-Liouville fractional derivatives
    Hilfer, R
    JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16): : 3914 - 3917
  • [25] On Riemann-Liouville and Caputo Fractional Forward Difference Monotonicity Analysis
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Hamasalh, Faraidun Kadir
    MATHEMATICS, 2021, 9 (11)
  • [26] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Tohru Morita
    Ken-ichi Sato
    Fractional Calculus and Applied Analysis, 2013, 16 : 630 - 653
  • [27] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Morita, Tohru
    Sato, Ken-ichi
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 630 - 653
  • [28] RIEMANN-STIELTJES INTEGRAL BOUNDARY VALUE PROBLEMS INVOLVING MIXED RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Ahmad, Bashir
    Alruwaily, Ymnah
    Alsaedi, Ahmed
    Ntouyas, Sotiris K.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [29] Riemann-stieltjes integral boundary value problems involving mixed riemann-liouville and caputo fractional derivatives
    Ahmad B.
    Alruwaily Y.
    Alsaedi A.
    Ntouyas S.K.
    Journal of Nonlinear Functional Analysis, 2021, 2021 (01):
  • [30] Analytical Solution of Linear Fractional Systems with Variable Coefficients Involving Riemann-Liouville and Caputo Derivatives
    Matychyn, Ivan
    SYMMETRY-BASEL, 2019, 11 (11):