Charging and Discharging RCα Circuit Under Riemann-Liouville and Caputo Fractional Derivatives

被引:0
|
作者
AbdelAty, Amr M. [1 ]
Radwan, Ahmed G. [2 ,3 ]
Ahmed, Waleed A. [1 ]
Faied, Mariam [4 ]
机构
[1] Fayoum Univ, Dept Engn Math & Phys, Fac Engn, Al Fayyum, Egypt
[2] Cairo Univ, Fac Engn, Dept Engn Math & Phys, Giza 12613, Egypt
[3] Nile Univ, NISC, Giza, Egypt
[4] Fayoum Univ, Fac Engn, Dept Elect Engn, Al Fayyum, Egypt
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the effect of non-zero initial condition on the time domain responses of fractional-order systems using Caputo and Riemann-Liouville (RL) fractional definitions are discussed. Analytical formulas were derived for the step and square wave responses of fractional-order RC alpha circuit under RL and Caputo operators for non-zero initial condition. Moreover, a simulation scheme for fractional state-space systems with non-zero initial condition is introduced.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Elattar, Ehab E.
    Hamed, Y. S.
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 3058 - 3070
  • [42] Solvability of Anti-periodic BVPs for Impulsive Fractional Differential Systems Involving Caputo and Riemann-Liouville Fractional Derivatives
    Liu, Yuji
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 125 - 152
  • [43] Fractional order differential systems involving right Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [44] Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives
    Li Kexue
    Peng Jigen
    Jia Junxiong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) : 476 - 510
  • [45] APPROXIMATE CONTROLLABILITY OF FRACTIONAL EVOLUTION SYSTEMS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Liu, Zhenhai
    Li, Xiuwen
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (04) : 1920 - 1933
  • [46] Fractional differential repetitive processes with Riemann–Liouville and Caputo derivatives
    Dariusz Idczak
    Rafał Kamocki
    Multidimensional Systems and Signal Processing, 2015, 26 : 193 - 206
  • [47] Nonlinear sequential Riemann-Liouville and Caputo fractional differential equations with generalized fractional integral conditions
    Promsakon, Chanon
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [48] The general solution of impulsive systems with Riemann-Liouville fractional derivatives
    Zhang, Xianmin
    Ding, Wenbin
    Peng, Hui
    Liu, Zuohua
    Shu, Tong
    OPEN MATHEMATICS, 2016, 14 : 1125 - 1137
  • [49] Lagrangians with linear velocities within Riemann-Liouville fractional derivatives
    Baleanu, D
    Avkar, T
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01): : 73 - 79
  • [50] Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions
    Weera Yukunthorn
    Sotiris K Ntouyas
    Jessada Tariboon
    Advances in Difference Equations, 2014