A Comparative Analysis of Conformable, Non-conformable, Riemann-Liouville, and Caputo Fractional Derivatives

被引:0
|
作者
Brahim, A. Ait [1 ]
El Ghordaf, J. [1 ]
El Hajaji, A. [2 ]
Hilal, K. [1 ]
Valdes, J. E. Napoles [3 ]
机构
[1] Univ Sci & Technol, AMSC Lab, Beni Mellal, Morocco
[2] Univ Chouaib Doukali, OEE Dept, ENCGJ, El Jadida, Morocco
[3] Univ Nacl Nordeste, FACENA Lab, RA-3400 Corrientes, Argentina
来源
关键词
Conformbale fractional derivative; non-conformable fractional derivative; Riemann-Liouville; Caputo fractional derivatives;
D O I
10.29020/nybg.ejpam.v17i3.5237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study undertakes a comparative analysis of the non conformable and conformable fractional derivatives alongside the Riemann-Liouville and Caputo fractional derivatives. It examines their efficacy in solving fractional ordinary differential equations and explores their applications in physics through numerical simulations. The findings suggest that the conformable fractional derivative emerges as a promising substitute for the non conformable, Riemann-Liouville and Caputo fractional derivatives within the range of order alpha where 1/2 < alpha < 1.
引用
收藏
页码:1842 / 1854
页数:13
相关论文
共 50 条
  • [1] On a Caputo conformable inclusion problem with mixed Riemann-Liouville conformable integro-derivative conditions
    Baleanu, Dumitru
    Etemad, Sina
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] Non-conformable subgraphs of non-conformable graphs
    Hilton, AJW
    Hind, HR
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 203 - 224
  • [3] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [4] NON-CONFORMABLE FRACTIONAL LAPLACE TRANSFORM
    MARTINEZ, F. R. A. N. C. I. S. C. O.
    MOHAMMED, P. S. H. T. I. W. A. N. O. T. H. M. A. N.
    VALDES, J. U. A. N. E. N. A. P. O. L. E. S.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2022, 46 (03): : 341 - 354
  • [5] On Riemann-Liouville and Caputo Derivatives
    Li, Changpin
    Qian, Deliang
    Chen, YangQuan
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [6] Riemann-Liouville, Caputo, and Sequential Fractional Derivatives in Differential Games
    Chikrii, Arkadii
    Matychyn, Ivan
    ADVANCES IN DYNAMIC GAMES: THEORY, APPLICATIONS, AND NUMERICAL METHODS FOR DIFFERENTIAL AND STOCHASTIC GAMES: DEDICATED TO THE MEMORY OF ARIK A. MELIKYAN, 2011, 11 : 61 - 81
  • [7] Fractional differential repetitive processes with Riemann-Liouville and Caputo derivatives
    Idczak, Dariusz
    Kamocki, Rafal
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2015, 26 (01) : 193 - 206
  • [8] Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives
    Khan, Aziz
    Syam, Muhammed I.
    Zada, Akbar
    Khan, Hasib
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (07):
  • [9] Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives
    Aziz Khan
    Muhammed I. Syam
    Akbar Zada
    Hasib Khan
    The European Physical Journal Plus, 133
  • [10] On a Caputo conformable inclusion problem with mixed Riemann–Liouville conformable integro-derivative conditions
    Dumitru Baleanu
    Sina Etemad
    Shahram Rezapour
    Advances in Difference Equations, 2020