A Comparative Analysis of Conformable, Non-conformable, Riemann-Liouville, and Caputo Fractional Derivatives

被引:0
|
作者
Brahim, A. Ait [1 ]
El Ghordaf, J. [1 ]
El Hajaji, A. [2 ]
Hilal, K. [1 ]
Valdes, J. E. Napoles [3 ]
机构
[1] Univ Sci & Technol, AMSC Lab, Beni Mellal, Morocco
[2] Univ Chouaib Doukali, OEE Dept, ENCGJ, El Jadida, Morocco
[3] Univ Nacl Nordeste, FACENA Lab, RA-3400 Corrientes, Argentina
来源
关键词
Conformbale fractional derivative; non-conformable fractional derivative; Riemann-Liouville; Caputo fractional derivatives;
D O I
10.29020/nybg.ejpam.v17i3.5237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study undertakes a comparative analysis of the non conformable and conformable fractional derivatives alongside the Riemann-Liouville and Caputo fractional derivatives. It examines their efficacy in solving fractional ordinary differential equations and explores their applications in physics through numerical simulations. The findings suggest that the conformable fractional derivative emerges as a promising substitute for the non conformable, Riemann-Liouville and Caputo fractional derivatives within the range of order alpha where 1/2 < alpha < 1.
引用
收藏
页码:1842 / 1854
页数:13
相关论文
共 50 条
  • [21] Approximation with Riemann-Liouville fractional derivatives
    Anastassiou, George A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (03): : 357 - 365
  • [22] Exponential stability of non-conformable fractional-order systems
    Echi, Nadhem
    Mabrouk, Fehmi
    Omri, Faouzi
    JOURNAL OF APPLIED ANALYSIS, 2024,
  • [23] Chaotic Attractors with Fractional Conformable Derivatives in the Liouville-Caputo Sense and Its Dynamical Behaviors
    Solis Perez, Jesus Emmanuel
    Francisco Gomez-Aguilar, Jose
    Baleanu, Dumitru
    Tchier, Fairouz
    ENTROPY, 2018, 20 (05)
  • [24] Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Taneco-Hernandez, M. A.
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 85 : 108 - 117
  • [25] Complete infinitesimal prolongation of the Riemann-Liouville and Caputo derivatives
    Costa, Felix S.
    Soares, Junior C. A.
    Frederico, Gastao S. F.
    Sousa, J. Vanterler da C.
    Jarosz, S.
    REVIEWS IN MATHEMATICAL PHYSICS, 2024, 36 (05)
  • [26] EXISTENCE OF POSITIVE SOLUTIONS FOR DIFFERENTIAL EQUATIONS INVOLVING RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Li, Yunhong
    Li, Yan
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018, Mathematical Research Press (2018):
  • [27] A New Numerical Approximation of Fractional Differentiation: Upwind Discretization for Riemann-Liouville and Caputo Derivatives
    Atangana, Abdon
    MATHEMATICAL METHODS IN ENGINEERING: APPLICATIONS IN DYNAMICS OF COMPLEX SYSTEMS, 2019, 24 : 192 - 211
  • [28] Explicit solutions to fractional Stefan-like problems for Caputo and Riemann-Liouville derivatives
    Roscani, Sabrina D.
    Caruso, Nahuel D.
    Tarzia, Domingo A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
  • [29] SOLUTION OF SAKATA-TAKETANI EQUATION VIA THE CAPUTO AND RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Merad, Hadjer
    Merghadi, Faycal
    Merad, Ahcene
    REPORTS ON MATHEMATICAL PHYSICS, 2022, 89 (03) : 359 - 370
  • [30] Riemann-Liouville and Caputo Fractional Potentials Associated with the Number Operator
    Alhussain, Ziyad A.
    Rebei, Habib
    Rguigui, Hafedh
    Riahi, Anis
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (06)