ON SEQUENCES (anξ)n≥1 CONVERGING MODULO 1

被引:7
|
作者
Bugeaud, Yann [1 ]
机构
[1] Univ Strasbourg, UFR Math, F-67084 Strasbourg, France
关键词
Distribution modulo 1;
D O I
10.1090/S0002-9939-09-09822-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that, for any sequence of positive real numbers (g(n))(n >= 1) satisfying g(n) >= 1 for n >= 1 and lim(n ->+infinity) g(n) = +infinity, for any real number theta in [0,1] and any irrational real number, there exists an increasing sequence of positive integers (a(n))(n >= 1) satisfying a(n) <= ng(n) for n >= 1 and such that the sequence of fractional parts ({a(n)xi})(n >= 1) tends to theta as it tends to infinity. This result is best possible in the sense that the condition lim(n ->+infinity) g(n) = +infinity cannot, be weakened, as recently proved by Dubickas.
引用
收藏
页码:2609 / 2612
页数:4
相关论文
共 50 条
  • [31] Distribution of some quadratic linear recurrence sequences modulo 1
    Dubickas, Arturas
    CARPATHIAN JOURNAL OF MATHEMATICS, 2014, 30 (01) : 79 - 86
  • [32] Sequences of Reducible {0,1} Polynomials Modulo a Prime
    Canner, Judith
    Jones, Lenny
    Purdom, Joseph
    JOURNAL OF INTEGER SEQUENCES, 2006, 9 (03)
  • [34] CONCERNING THE DIVISORS OF N AND THE EXPONENTS THEY BELONG TO MODULO (N-1) OR (N+1)
    ADLER, I
    FIBONACCI QUARTERLY, 1989, 27 (03): : 259 - 267
  • [35] Area-Power Efficient Modulo 2n-1 and Modulo 2n+1 Multipliers for {2n-1, 2n, 2n+1} Based RNS
    Muralidharan, Ramya
    Chang, Chip-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (10) : 2263 - 2274
  • [36] Novel modulo 2n+1 multipliers
    Vergos, H. T.
    Efstathiou, C.
    DSD 2006: 9TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN: ARCHITECTURES, METHODS AND TOOLS, PROCEEDINGS, 2006, : 168 - +
  • [37] NOVEL MODULO 2n+1 SUBTRACTORS
    Vassalos, E.
    Bakalis, D.
    Vergos, H. T.
    2009 16TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 597 - +
  • [38] On the design of modulo 2n±1 adders
    Efstathiou, C
    Vergos, HT
    Nikolos, D
    ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 517 - 520
  • [39] Efficient Modulo 2n+1 Multipliers
    Chen, Jian Wen
    Yao, Ruo He
    Wu, Wei Jing
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2011, 19 (12) : 2149 - 2157
  • [40] Efficient modulo 2n ± 1 squarers
    Bakalis, D.
    Vergos, H. T.
    Spyrou, A.
    INTEGRATION-THE VLSI JOURNAL, 2011, 44 (03) : 163 - 174