NOVEL MODULO 2n+1 SUBTRACTORS

被引:0
|
作者
Vassalos, E. [1 ]
Bakalis, D. [1 ]
Vergos, H. T.
机构
[1] Univ Patras, Dept Phys, Elect Lab, GR-26110 Patras, Greece
关键词
Residue number system; modulo 2(n)+1 circuits; subtraction; normal and diminished-one number representation; IMPLEMENTATION; ARCHITECTURE; DESIGN;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Novel architectures for designing modulo 2(n)+1 subtractors are introduced, for both the normal and the diminished-one number representation of the operands. Zero-handling is also considered in the diminished-one operand representation case. The modulo 2(n)+1 subtractors for operands in the normal representation that are proposed are shown to be more efficient in area, delay and power dissipation than the currently most efficient ones. The proposed diminished-one modulo 2(n)+1 subtractors offer similar characteristics to those of the corresponding diminished-one adders.
引用
收藏
页码:597 / +
页数:2
相关论文
共 50 条
  • [1] On the Design of Modulo 2 n ±1 Subtractors and Adders/Subtractors
    Vassalos, E.
    Bakalis, D.
    Vergos, H. T.
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2011, 30 (06) : 1445 - 1461
  • [2] Novel modulo 2n+1 multipliers
    Vergos, H. T.
    Efstathiou, C.
    [J]. DSD 2006: 9TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN: ARCHITECTURES, METHODS AND TOOLS, PROCEEDINGS, 2006, : 168 - +
  • [3] On the Design of Modulo 2n±1 Subtractors and Adders/Subtractors
    E. Vassalos
    D. Bakalis
    H. T. Vergos
    [J]. Circuits, Systems, and Signal Processing, 2011, 30 : 1445 - 1461
  • [4] Novel Modulo 2n+1 Subtractor and Multiplier
    Younes, Dina
    Steffan, Pavel
    [J]. PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON SYSTEMS (ICONS 2011), 2011, : 36 - 38
  • [5] Efficient Modulo 2n+1 Multipliers
    Chen, Jian Wen
    Yao, Ruo He
    Wu, Wei Jing
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2011, 19 (12) : 2149 - 2157
  • [6] Algorithm for modulo (2n+1) multiplication
    Sousa, LA
    [J]. ELECTRONICS LETTERS, 2003, 39 (09) : 752 - 754
  • [7] On Modulo 2n+1 Adder Design
    Vergos, Haridimos T.
    Dimitrakopoulos, Giorgos
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2012, 61 (02) : 173 - 186
  • [8] Novel Optimized Designs of Modulo 2n+1 Adder for Quantum Computing
    Gaur, Bhaskar
    Thapliyal, Himanshu
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2024, 32 (09) : 1759 - 1763
  • [9] Simplified architecture for modulo (2n+1) multiplication
    Chinese Acad of Sciences, Beijing, China
    [J]. IEEE Trans Comput, 3 (333-337):
  • [10] Improved modulo (2n+1) multiplier for IDEA
    Chen, Yi-Jung
    Duh, Dyi-Rong
    Han, Yunghsiang Sam
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2007, 23 (03) : 907 - 919