ON SEQUENCES (anξ)n≥1 CONVERGING MODULO 1

被引:7
|
作者
Bugeaud, Yann [1 ]
机构
[1] Univ Strasbourg, UFR Math, F-67084 Strasbourg, France
关键词
Distribution modulo 1;
D O I
10.1090/S0002-9939-09-09822-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that, for any sequence of positive real numbers (g(n))(n >= 1) satisfying g(n) >= 1 for n >= 1 and lim(n ->+infinity) g(n) = +infinity, for any real number theta in [0,1] and any irrational real number, there exists an increasing sequence of positive integers (a(n))(n >= 1) satisfying a(n) <= ng(n) for n >= 1 and such that the sequence of fractional parts ({a(n)xi})(n >= 1) tends to theta as it tends to infinity. This result is best possible in the sense that the condition lim(n ->+infinity) g(n) = +infinity cannot, be weakened, as recently proved by Dubickas.
引用
收藏
页码:2609 / 2612
页数:4
相关论文
共 50 条
  • [21] On the distribution modulo 1 of the values of F(n)+ασ(n)
    De Koninck, JM
    Kátai, I
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 66 (1-2): : 121 - 128
  • [22] On the uniform distribution modulo 1 of multidimensional LS-sequences
    Christoph Aistleitner
    Markus Hofer
    Volker Ziegler
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1329 - 1344
  • [23] EXTREMAL PROPERTIES OF (EPI)STURMIAN SEQUENCES AND DISTRIBUTION MODULO 1
    Allouche, Jean-Paul
    Glen, Amy
    ENSEIGNEMENT MATHEMATIQUE, 2010, 56 (3-4): : 365 - 401
  • [24] On the uniform distribution modulo 1 of multidimensional LS-sequences
    Aistleitner, Christoph
    Hofer, Markus
    Ziegler, Volker
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (05) : 1329 - 1344
  • [25] Equidistribution almost everywhere modulo 1 of some oscillating sequences
    Rittaud, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (04): : 339 - 342
  • [26] DISTRIBUTION MODULO 1 OF SOME OSCILLATING SEQUENCES .2.
    BEREND, D
    BOSHERNITZAN, MD
    KOLESNIK, G
    ISRAEL JOURNAL OF MATHEMATICS, 1995, 92 (1-3) : 125 - 147
  • [27] Distribution modulo 1 of some oscillating sequences. III
    Berend, D
    Boshernitzan, MD
    Kolesnik, G
    ACTA MATHEMATICA HUNGARICA, 2002, 95 (1-2) : 1 - 20
  • [28] Distribution Modulo 1 of Some Oscillating Sequences. III
    Daniel Berend
    Michael D. Boshernitzan
    Grigori Kolesnik
    Acta Mathematica Hungarica, 2002, 95 : 1 - 20
  • [29] Uniform distribution almost everywhere modulo 1 of oscillating sequences
    Rittaud, B
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2000, 128 (03): : 451 - 471
  • [30] NEW MULTIPLIERS MODULO 2(N)-1
    SKAVANTZOS, A
    RAO, PB
    IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (08) : 957 - 961