Distribution Modulo 1 of Some Oscillating Sequences. III

被引:0
|
作者
Daniel Berend
Michael D. Boshernitzan
Grigori Kolesnik
机构
[1] Ben-Gurion University,Departments Of Mathematics And Computer Science
来源
关键词
Density modulo 1; distribution modulo 1; uniform distribution; exponential sums; Hardy field;
D O I
暂无
中图分类号
学科分类号
摘要
For some oscillating functions, such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h\left( x \right) = x^\pi \log ^3 \times \cos \times $$ \end{document}, we consider the distribution properties modulo 1 (density, uniform distribution) of the sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h\left( n \right)$$ \end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${n \geqq 1}$$ \end{document}. We obtain positive and negative results covering the case when the factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x^{\pi } {log}^3 x$$ \end{document} is replaced by an arbitrary function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f$$ \end{document} of at most polynomial growth belonging to any Hardy field. (The latter condition may be viewed as a regularity growth condition on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f$$ \end{document}.) Similar results are obtained for the subsequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h\left( p \right)$$ \end{document}, taken over the primes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$p = 2,3,5,...\;.$$ \end{document}
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条