Distribution Modulo 1 of Some Oscillating Sequences. III

被引:0
|
作者
Daniel Berend
Michael D. Boshernitzan
Grigori Kolesnik
机构
[1] Ben-Gurion University,Departments Of Mathematics And Computer Science
来源
关键词
Density modulo 1; distribution modulo 1; uniform distribution; exponential sums; Hardy field;
D O I
暂无
中图分类号
学科分类号
摘要
For some oscillating functions, such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h\left( x \right) = x^\pi \log ^3 \times \cos \times $$ \end{document}, we consider the distribution properties modulo 1 (density, uniform distribution) of the sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h\left( n \right)$$ \end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${n \geqq 1}$$ \end{document}. We obtain positive and negative results covering the case when the factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x^{\pi } {log}^3 x$$ \end{document} is replaced by an arbitrary function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f$$ \end{document} of at most polynomial growth belonging to any Hardy field. (The latter condition may be viewed as a regularity growth condition on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f$$ \end{document}.) Similar results are obtained for the subsequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h\left( p \right)$$ \end{document}, taken over the primes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$p = 2,3,5,...\;.$$ \end{document}
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [22] On the uniform distribution modulo 1 of multidimensional LS-sequences
    Christoph Aistleitner
    Markus Hofer
    Volker Ziegler
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1329 - 1344
  • [23] EXTREMAL PROPERTIES OF (EPI)STURMIAN SEQUENCES AND DISTRIBUTION MODULO 1
    Allouche, Jean-Paul
    Glen, Amy
    ENSEIGNEMENT MATHEMATIQUE, 2010, 56 (3-4): : 365 - 401
  • [24] On the uniform distribution modulo 1 of multidimensional LS-sequences
    Aistleitner, Christoph
    Hofer, Markus
    Ziegler, Volker
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (05) : 1329 - 1344
  • [26] Distribution of Wythoff Sequences Modulo One
    Kawsumarng, Sutasinee
    Khemaratchatakumthorn, Tammatada
    Noppakaew, Passawan
    Pongsriiam, Prapanpong
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (04): : 1045 - 1053
  • [27] ON THE UNIFORM-DISTRIBUTION MODULO ONE OF SOME LOG-LIKE SEQUENCES
    TOO, YH
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1992, 68 (09) : 269 - 272
  • [28] Some continuous endomorphisms of P-recursives sequences.
    Mokhtar, Ahmed Ait
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (21-22) : 1227 - 1230
  • [29] ON DISTRIBUTION OF NO MODULO 1
    GRAHAM, RL
    VANLINT, JH
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (04): : 1020 - &
  • [30] Density modulo 1 of sublacunary sequences
    Akhunzhanov, RK
    Moshchevitin, NG
    MATHEMATICAL NOTES, 2005, 77 (5-6) : 741 - 750