Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation

被引:84
|
作者
Zhou, Jingtian [1 ,2 ]
Ma, Jianzhu [3 ]
Chen, Yusi [4 ,5 ]
Cheng, Chuankai [6 ]
Bao, Bokan [2 ]
Peng, Jian [7 ]
Sejnowski, Terrence J. [4 ,5 ]
Dixon, Jesse R. [8 ]
Ecker, Joseph R. [1 ,9 ]
机构
[1] Salk Inst Biol Studies, Genom Anal Lab, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Bioinformat & Syst Biol Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[4] Salk Inst Biol Studies, Computat Neurobiol Lab, La Jolla, CA 92037 USA
[5] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[7] Univ Illinois, gDept Comp Sci, Urbana, IL 61801 USA
[8] Salk Inst Biol Studies, Peptide Biol Lab, La Jolla, CA 92037 USA
[9] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
关键词
single cell; Hi-C; 3D chromosome structure; random walk; CHROMATIN ACCESSIBILITY; REVEALS PRINCIPLES; GENOME; DYNAMICS; REORGANIZATION; ORGANIZATION; DOMAINS;
D O I
10.1073/pnas.1901423116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe scHiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real single-cell Hi-C data as benchmarks, scHiCluster significantly improves clustering accuracy when applied to low coverage datasets compared with existing methods. After imputation by scHiCluster, topologically associating domain (TAD)-like structures (TLSs) can be identified within single cells, and their consensus boundaries were enriched at the TAD boundaries observed in bulk cell Hi-C samples. In summary, scHiCluster facilitates visualization and comparison of single-cell 3D genomes.
引用
收藏
页码:14011 / 14018
页数:8
相关论文
共 50 条
  • [11] Single-Cell Hi-C Technologies and Computational Data Analysis
    Dautle, Madison A.
    Chen, Yong
    ADVANCED SCIENCE, 2025, 12 (09)
  • [12] Multiscale and integrative single-cell Hi-C analysis with Higashi
    Zhang, Ruochi
    Zhou, Tianming
    Ma, Jian
    NATURE BIOTECHNOLOGY, 2022, 40 (02) : 254 - +
  • [13] Single-cell Hi-C data analysis: safety in numbers
    Galitsyna, Aleksandra A.
    Gelfand, Mikhail S.
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [14] Model-based imputation enables improved resolution for identifying differential chromatin contacts in single-cell Hi-C data
    Shokraneh, Neda
    Andrews, Megan
    Libbrecht, Maxwell
    MACHINE LEARNING IN COMPUTATIONAL BIOLOGY, VOL 240, 2023, 240
  • [15] Multiscale and integrative single-cell Hi-C analysis with Higashi
    Ruochi Zhang
    Tianming Zhou
    Jian Ma
    Nature Biotechnology, 2022, 40 : 254 - 261
  • [16] Comparison and critical assessment of single-cell Hi-C protocols
    Gridina, M.
    Taskina, A.
    Lagunov, T.
    Nurislamov, A.
    Kulikova, T.
    Krasikova, A.
    Fishman, V.
    HELIYON, 2022, 8 (10)
  • [17] Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization
    Wolff, Joachim
    Rabbani, Leily
    Gilsbach, Ralf
    Richard, Gautier
    Manke, Thomas
    Backofen, Rolf
    Gruening, Bjoern A.
    NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) : W177 - W184
  • [18] Single-cell Hi-C: how modeling can augment experiment?
    Mali, Samira
    Tolokh, Igor S.
    Sharakhov, Igor V.
    Onufriev, Alexey V.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 362A - 362A
  • [19] GiniQC: a measure for quantifying noise in single-cell Hi-C data
    Horton, Connor A.
    Alver, Burak H.
    Park, Peter J.
    BIOINFORMATICS, 2020, 36 (09) : 2902 - 2904
  • [20] A mini-review of single-cell Hi-C embedding methods
    Ma, Rui
    Huang, Jingong
    Jiang, Tao
    Ma, Wenxiu
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 4027 - 4035