Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation

被引:84
|
作者
Zhou, Jingtian [1 ,2 ]
Ma, Jianzhu [3 ]
Chen, Yusi [4 ,5 ]
Cheng, Chuankai [6 ]
Bao, Bokan [2 ]
Peng, Jian [7 ]
Sejnowski, Terrence J. [4 ,5 ]
Dixon, Jesse R. [8 ]
Ecker, Joseph R. [1 ,9 ]
机构
[1] Salk Inst Biol Studies, Genom Anal Lab, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Bioinformat & Syst Biol Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[4] Salk Inst Biol Studies, Computat Neurobiol Lab, La Jolla, CA 92037 USA
[5] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[7] Univ Illinois, gDept Comp Sci, Urbana, IL 61801 USA
[8] Salk Inst Biol Studies, Peptide Biol Lab, La Jolla, CA 92037 USA
[9] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
关键词
single cell; Hi-C; 3D chromosome structure; random walk; CHROMATIN ACCESSIBILITY; REVEALS PRINCIPLES; GENOME; DYNAMICS; REORGANIZATION; ORGANIZATION; DOMAINS;
D O I
10.1073/pnas.1901423116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe scHiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real single-cell Hi-C data as benchmarks, scHiCluster significantly improves clustering accuracy when applied to low coverage datasets compared with existing methods. After imputation by scHiCluster, topologically associating domain (TAD)-like structures (TLSs) can be identified within single cells, and their consensus boundaries were enriched at the TAD boundaries observed in bulk cell Hi-C samples. In summary, scHiCluster facilitates visualization and comparison of single-cell 3D genomes.
引用
收藏
页码:14011 / 14018
页数:8
相关论文
共 50 条
  • [21] Advances in methods and applications of single-cell Hi-C data analysis
    Gong H.
    Ma F.
    Zhang X.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (05): : 1033 - 1039
  • [22] scHiCTools: A computational toolbox for analyzing single-cell Hi-C data
    Li, Xinjun
    Feng, Fan
    Pu, Hongxi
    Leung, Wai Yan
    Liu, Jie
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (05)
  • [23] ImputeHiFI: An Imputation Method for Multiplexed DNA FISH Data by Utilizing Single-Cell Hi-C and RNA FISH Data
    Fan, Shichen
    Dang, Dachang
    Gao, Lin
    Zhang, Shihua
    ADVANCED SCIENCE, 2024, 11 (42)
  • [24] HiCDiff: single-cell Hi-C data denoising with diffusion models
    Wang, Yanli
    Cheng, Jianlin
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)
  • [25] Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    Nagano, Takashi
    Lubling, Yaniv
    Stevens, Tim J.
    Schoenfelder, Stefan
    Yaffe, Eitan
    Dean, Wendy
    Laue, Ernest D.
    Tanay, Amos
    Fraser, Peter
    NATURE, 2013, 502 (7469) : 59 - +
  • [26] Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    Takashi Nagano
    Yaniv Lubling
    Tim J. Stevens
    Stefan Schoenfelder
    Eitan Yaffe
    Wendy Dean
    Ernest D. Laue
    Amos Tanay
    Peter Fraser
    Nature, 2013, 502 : 59 - 64
  • [27] Deep neural network models for cell type prediction based on single-cell Hi-C data
    Zhou, Bing
    Liu, Quanzhong
    Wang, Meili
    Wu, Hao
    BMC GENOMICS, 2024, 22 (SUPPL 5):
  • [28] Author Correction: Multiscale and integrative single-cell Hi-C analysis with Higashi
    Ruochi Zhang
    Tianming Zhou
    Jian Ma
    Nature Biotechnology, 2022, 40 (3) : 432 - 432
  • [29] Scool: a new data storage format for single-cell Hi-C data
    Wolff, Joachim
    Abdennur, Nezar
    Backofen, Rolf
    Gruening, Bjorn
    BIOINFORMATICS, 2021, 37 (14) : 2053 - 2054
  • [30] Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data
    Carstens, Simeon
    Nilges, Michael
    Habeck, Michael
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (12)