Advances in methods and applications of single-cell Hi-C data analysis

被引:0
|
作者
Gong H. [1 ,2 ]
Ma F. [3 ]
Zhang X. [2 ,4 ]
机构
[1] Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 100083, Beijing
[2] School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083, Beijing
[3] Inspur Group Co. Ltd., Jinan
[4] Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, Guangdong
关键词
Cell classification; Data analysis; Imputation; Multi-scale structure; Single-cell Hi-C;
D O I
10.7507/1001-5515.202303046
中图分类号
学科分类号
摘要
染色质三维基因组结构在细胞功能和基因调控中起着关键作用。单细胞Hi-C技术可以在细胞水平上捕获基因组结构信息,这为研究不同细胞类型之间基因组结构的变化提供了机会。最近,针对单细胞Hi-C数据分析出现了一些很好的计算分析方法。本文首先对可用的单细胞Hi-C数据分析方法进行综述,包括单细胞Hi-C数据的预处理方法、基于单细胞Hi-C数据的多尺度结构识别方法、基于单细胞Hi-C数据集的类bulk Hi-C接触矩阵生成方法、伪时间序列分析和细胞分类研究;然后阐述了单细胞Hi-C数据在细胞分化、结构变异的应用研究;最后展望了基于单细胞Hi-C数据的未来发展前景。.; Chromatin three-dimensional genome structure plays a key role in cell function and gene regulation. Single-cell Hi-C techniques can capture genomic structure information at the cellular level, which provides an opportunity to study changes in genomic structure between different cell types. Recently, some excellent computational methods have been developed for single-cell Hi-C data analysis. In this paper, the available methods for single-cell Hi-C data analysis were first reviewed, including preprocessing of single-cell Hi-C data, multi-scale structure recognition based on single-cell Hi-C data, bulk-like Hi-C contact matrix generation based on single-cell Hi-C data sets, pseudo-time series analysis, and cell classification. Then the application of single-cell Hi-C data in cell differentiation and structural variation was described. Finally, the future development direction of single-cell Hi-C data analysis was also prospected.
引用
收藏
页码:1033 / 1039
页数:6
相关论文
empty
未找到相关数据