Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation

被引:84
|
作者
Zhou, Jingtian [1 ,2 ]
Ma, Jianzhu [3 ]
Chen, Yusi [4 ,5 ]
Cheng, Chuankai [6 ]
Bao, Bokan [2 ]
Peng, Jian [7 ]
Sejnowski, Terrence J. [4 ,5 ]
Dixon, Jesse R. [8 ]
Ecker, Joseph R. [1 ,9 ]
机构
[1] Salk Inst Biol Studies, Genom Anal Lab, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Bioinformat & Syst Biol Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[4] Salk Inst Biol Studies, Computat Neurobiol Lab, La Jolla, CA 92037 USA
[5] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[7] Univ Illinois, gDept Comp Sci, Urbana, IL 61801 USA
[8] Salk Inst Biol Studies, Peptide Biol Lab, La Jolla, CA 92037 USA
[9] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
关键词
single cell; Hi-C; 3D chromosome structure; random walk; CHROMATIN ACCESSIBILITY; REVEALS PRINCIPLES; GENOME; DYNAMICS; REORGANIZATION; ORGANIZATION; DOMAINS;
D O I
10.1073/pnas.1901423116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe scHiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real single-cell Hi-C data as benchmarks, scHiCluster significantly improves clustering accuracy when applied to low coverage datasets compared with existing methods. After imputation by scHiCluster, topologically associating domain (TAD)-like structures (TLSs) can be identified within single cells, and their consensus boundaries were enriched at the TAD boundaries observed in bulk cell Hi-C samples. In summary, scHiCluster facilitates visualization and comparison of single-cell 3D genomes.
引用
收藏
页码:14011 / 14018
页数:8
相关论文
共 50 条
  • [41] Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq
    Liu, Zhiyuan
    Chen, Yujie
    Xia, Qimin
    Liu, Menghan
    Xu, Heming
    Chi, Yi
    Deng, Yujing
    Xing, Dong
    SCIENCE, 2023, 380 (6649) : 1070 - 1076
  • [42] SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data
    Miao Yu
    Armen Abnousi
    Yanxiao Zhang
    Guoqiang Li
    Lindsay Lee
    Ziyin Chen
    Rongxin Fang
    Taylor M. Lagler
    Yuchen Yang
    Jia Wen
    Quan Sun
    Yun Li
    Bing Ren
    Ming Hu
    Nature Methods, 2021, 18 : 1056 - 1059
  • [43] SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data
    Yu, Miao
    Abnousi, Armen
    Zhang, Yanxiao
    Li, Guoqiang
    Lee, Lindsay
    Chen, Ziyin
    Fang, Rongxin
    Lagler, Taylor M.
    Yang, Yuchen
    Wen, Jia
    Sun, Quan
    Li, Yun
    Ren, Bing
    Hu, Ming
    NATURE METHODS, 2021, 18 (09) : 1056 - +
  • [44] Droplet Hi-C enables scalable, single-cell profiling of chromatin architecture in heterogeneous tissues
    Chang, Lei
    Xie, Yang
    Taylor, Brett
    Wang, Zhaoning
    Sun, Jiachen
    Armand, Ethan J.
    Mishra, Shreya
    Xu, Jie
    Tastemel, Melodi
    Lie, Audrey
    Gibbs, Zane A.
    Indralingam, Hannah S.
    Tan, Tuyet M.
    Bejar, Rafael
    Chen, Clark C.
    Furnari, Frank B.
    Hu, Ming
    Ren, Bing
    NATURE BIOTECHNOLOGY, 2024,
  • [45] 3D structures of individual mammalian genomes studied by single-cell Hi-C
    Tim J. Stevens
    David Lando
    Srinjan Basu
    Liam P. Atkinson
    Yang Cao
    Steven F. Lee
    Martin Leeb
    Kai J. Wohlfahrt
    Wayne Boucher
    Aoife O’Shaughnessy-Kirwan
    Julie Cramard
    Andre J. Faure
    Meryem Ralser
    Enrique Blanco
    Lluis Morey
    Miriam Sansó
    Matthieu G. S. Palayret
    Ben Lehner
    Luciano Di Croce
    Anton Wutz
    Brian Hendrich
    Dave Klenerman
    Ernest D. Laue
    Nature, 2017, 544 : 59 - 64
  • [46] 3D structures of individual mammalian genomes studied by single-cell Hi-C
    Stevens, Tim J.
    Lando, David
    Basu, Srinjan
    Atkinson, Liam P.
    Cao, Yang
    Lee, Steven F.
    Leeb, Martin
    Wohlfahrt, Kai J.
    Boucher, Wayne
    O'Shaughnessy-Kirwan, Aoife
    Cramard, Julie
    Faure, Andre J.
    Ralser, Meryem
    Blanco, Enrique
    Morey, Lluis
    Sanso, Miriam
    Palayret, Matthieu G. S.
    Lehner, Ben
    Di Croce, Luciano
    Wutz, Anton
    Hendrich, Brian
    Klenerman, Dave
    Laue, Ernest D.
    NATURE, 2017, 544 (7648) : 59 - +
  • [47] CTPredictor: A comprehensive and robust framework for predicting cell types by integrating multi-scale features from single-cell Hi-C data
    Shi Z.
    Wu H.
    Computers in Biology and Medicine, 2024, 173
  • [48] Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells
    Ramani, Vijay
    Deng, Xinxian
    Qiu, Ruolan
    Lee, Choli
    Disteche, Christine M.
    Noble, William S.
    Shendure, Jay
    Duan, Zhijun
    METHODS, 2020, 170 : 61 - 68
  • [49] A robust single cell clustering method based on subspace learning and partial imputation
    Zheng, Ruiqing
    Liang, Zhenlan
    Meng, Xiangmao
    Tian, Yu
    Li, Min
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 140 - 145
  • [50] Bayesian Estimation of Three-Dimensional Chromosomal Structure from Single-Cell Hi-C Data
    Rosenthal, Michael
    Bryner, Darshan
    Huffer, Fred
    Evans, Shane
    Srivastava, Anuj
    Neretti, Nicola
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (11) : 1191 - 1202