Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation

被引:84
|
作者
Zhou, Jingtian [1 ,2 ]
Ma, Jianzhu [3 ]
Chen, Yusi [4 ,5 ]
Cheng, Chuankai [6 ]
Bao, Bokan [2 ]
Peng, Jian [7 ]
Sejnowski, Terrence J. [4 ,5 ]
Dixon, Jesse R. [8 ]
Ecker, Joseph R. [1 ,9 ]
机构
[1] Salk Inst Biol Studies, Genom Anal Lab, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Bioinformat & Syst Biol Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[4] Salk Inst Biol Studies, Computat Neurobiol Lab, La Jolla, CA 92037 USA
[5] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[7] Univ Illinois, gDept Comp Sci, Urbana, IL 61801 USA
[8] Salk Inst Biol Studies, Peptide Biol Lab, La Jolla, CA 92037 USA
[9] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
关键词
single cell; Hi-C; 3D chromosome structure; random walk; CHROMATIN ACCESSIBILITY; REVEALS PRINCIPLES; GENOME; DYNAMICS; REORGANIZATION; ORGANIZATION; DOMAINS;
D O I
10.1073/pnas.1901423116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe scHiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real single-cell Hi-C data as benchmarks, scHiCluster significantly improves clustering accuracy when applied to low coverage datasets compared with existing methods. After imputation by scHiCluster, topologically associating domain (TAD)-like structures (TLSs) can be identified within single cells, and their consensus boundaries were enriched at the TAD boundaries observed in bulk cell Hi-C samples. In summary, scHiCluster facilitates visualization and comparison of single-cell 3D genomes.
引用
收藏
页码:14011 / 14018
页数:8
相关论文
共 50 条
  • [31] scHiCDiff: detecting differential chromatin interactions in single-cell Hi-C data
    Liu, Huiling
    Ma, Wenxiu
    BIOINFORMATICS, 2023, 39 (10)
  • [32] Advancements and future directions in single-cell Hi-C based 3D chromatin modeling
    Banecki, Krzysztof
    Korsak, Sevastianos
    Plewczynski, Dariusz
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 3549 - 3558
  • [33] ScHiCAtt: Enhancing single-cell Hi-C data resolution using attention-based models
    Menon, Rohit
    Chowdhury, H. M. A. Mohit
    Oluwadare, Oluwatosin
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 : 978 - 991
  • [34] Single-cell Hi-C data enhancement with deep residual and generative adversarial networks
    Wang, Yanli
    Guo, Zhiye
    Cheng, Jianlin
    BIOINFORMATICS, 2023, 39 (08)
  • [35] Single-cell Hi-C discloses general principles of the individual genome folding in Drosophila
    Zakharova, V. S.
    Galitsyna, A. A.
    Polovnikov, K. E.
    Khrameeva, E. E.
    Logacheva, M. D.
    Mikhaleva, E. A.
    Vassetzky, E. S.
    Gavrilov, A. A.
    Shevelev, Y. Y.
    Nechaev, S. K.
    Ulianov, S. V.
    Razin, S. V.
    FEBS OPEN BIO, 2018, 8 : 65 - 66
  • [36] scHiCNorm: a software package to eliminate systematic biases in single-cell Hi-C data
    Liu, Tong
    Wang, Zheng
    BIOINFORMATICS, 2018, 34 (06) : 1046 - 1047
  • [37] Enhancing Single-Cell and Bulk Hi-C Data Using a Generative Transformer Model
    Gao, Ruoying
    Ferraro, Thomas N.
    Chen, Liang
    Zhang, Shaoqiang
    Chen, Yong
    BIOLOGY-BASEL, 2025, 14 (03):
  • [38] Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell
    Takashi Nagano
    Yaniv Lubling
    Eitan Yaffe
    Steven W Wingett
    Wendy Dean
    Amos Tanay
    Peter Fraser
    Nature Protocols, 2015, 10 : 1986 - 2003
  • [39] Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell
    Nagano, Takashi
    Lubling, Yaniv
    Yaffe, Eitan
    Wingett, Steven W.
    Dean, Wendy
    Tanay, Amos
    Fraser, Peter
    NATURE PROTOCOLS, 2015, 10 (12) : 1986 - 2003
  • [40] scHiCStackL: a stacking ensemble learning-based method for single-cell Hi-C classification using cell embedding
    Wu, Hao
    Wu, Yingfu
    Jiang, Yuhong
    Zhou, Bing
    Zhou, Haoru
    Chen, Zhongli
    Xiong, Yi
    Liu, Quanzhong
    Zhang, Hongming
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)