Multiscale and integrative single-cell Hi-C analysis with Higashi

被引:95
|
作者
Zhang, Ruochi [1 ]
Zhou, Tianming [1 ]
Ma, Jian [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
GENOME ARCHITECTURE; PRINCIPLES; DYNAMICS;
D O I
10.1038/s41587-021-01034-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell Hi-C (scHi-C) can identify cell-to-cell variability of three-dimensional (3D) chromatin organization, but the sparseness of measured interactions poses an analysis challenge. Here we report Higashi, an algorithm based on hypergraph representation learning that can incorporate the latent correlations among single cells to enhance overall imputation of contact maps. Higashi outperforms existing methods for embedding and imputation of scHi-C data and is able to identify multiscale 3D genome features in single cells, such as compartmentalization and TAD-like domain boundaries, allowing refined delineation of their cell-to-cell variability. Moreover, Higashi can incorporate epigenomic signals jointly profiled in the same cell into the hypergraph representation learning framework, as compared to separate analysis of two modalities, leading to improved embeddings for single-nucleus methyl-3C data. In an scHi-C dataset from human prefrontal cortex, Higashi identifies connections between 3D genome features and cell-type-specific gene regulation. Higashi can also potentially be extended to analyze single-cell multiway chromatin interactions and other multimodal single-cell omics data.
引用
收藏
页码:254 / +
页数:13
相关论文
共 50 条
  • [1] Multiscale and integrative single-cell Hi-C analysis with Higashi
    Ruochi Zhang
    Tianming Zhou
    Jian Ma
    Nature Biotechnology, 2022, 40 : 254 - 261
  • [2] Author Correction: Multiscale and integrative single-cell Hi-C analysis with Higashi
    Ruochi Zhang
    Tianming Zhou
    Jian Ma
    Nature Biotechnology, 2022, 40 (3) : 432 - 432
  • [3] Multiscale and integrative single-cell Hi-C analysis with Higashi (vol 40, pg 432, 2022)
    Zhang, Ruochi
    Zhou, Tianming
    Ma, Jian
    NATURE BIOTECHNOLOGY, 2022, 40 (03) : 432 - 432
  • [4] Single-Cell Hi-C Technologies and Computational Data Analysis
    Dautle, Madison A.
    Chen, Yong
    ADVANCED SCIENCE, 2025, 12 (09)
  • [5] Massively multiplex single-cell Hi-C
    Ramani, Vijay
    Deng, Xinxian
    Qiu, Ruolan
    Gunderson, Kevin L.
    Steemers, Frank J.
    Disteche, Christine M.
    Noble, William S.
    Duan, Zhijun
    Shendure, Jay
    NATURE METHODS, 2017, 14 (03) : 263 - +
  • [6] Single-cell Hi-C data analysis: safety in numbers
    Galitsyna, Aleksandra A.
    Gelfand, Mikhail S.
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [7] Massively multiplex single-cell Hi-C
    Ramani V.
    Deng X.
    Qiu R.
    Gunderson K.L.
    Steemers F.J.
    Disteche C.M.
    Noble W.S.
    Duan Z.
    Shendure J.
    Nature Methods, 2017, 14 (3) : 263 - 266
  • [8] Single-cell technologies meet Hi-C
    Hughes, Jim R.
    Davies, James O. J.
    NATURE GENETICS, 2024, : 1542 - 1543
  • [9] Advances in methods and applications of single-cell Hi-C data analysis
    Gong H.
    Ma F.
    Zhang X.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (05): : 1033 - 1039
  • [10] Unsupervised embedding of single-cell Hi-C data
    Liu, Jie
    Lin, Dejun
    Yardimci, Galip Gurkan
    Noble, William Stafford
    BIOINFORMATICS, 2018, 34 (13) : 96 - 104